Caffe视觉层Vision Layers是什么,有何用途
Admin 2022-08-05 群英技术资讯 292 次浏览
本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling,Local Response Normalization (LRN), im2col等层。
就是卷积层,是卷积神经网络(CNN)的核心层。
层类型:Convolution
lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。
如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。
在后面的convolution_param中,我们可以设定卷积层的特有参数。
必须设置的参数:
其它参数:
group: 分组,默认为1组。如果大于1,我们限制卷积的连接操作在一个子集内。如果我们根据图像的通道来分组,那么第i个输出分组只能与第i个输入分组进行连接。
如果设置stride为1,前后两次卷积部分存在重叠。如果设置pad=(kernel_size-1)/2,则运算后,宽度和高度不变。
示例:
layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: 1 } param { lr_mult: 2 } convolution_param { num_output: 20 kernel_size: 5 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } }
也叫池化层,为了减少运算量和数据维度而设置的一种层。
层类型:Pooling
必须设置的参数:
kernel_size: 池化的核大小。也可以用kernel_h和kernel_w分别设定。
其它参数:
示例:
layer { name: "pool1" type: "Pooling" bottom: "conv1" top: "pool1" pooling_param { pool: MAX kernel_size: 3 stride: 2 } }
pooling层的运算方法基本是和卷积层是一样的。
如果设置stride为2,前后两次卷积部分不重叠。100*100的特征图池化后,变成50*50.
此层是对一个输入的局部区域进行归一化,达到“侧抑制”的效果。可去搜索AlexNet或GoogLenet,里面就用到了这个功能
层类型:LRN
参数:全部为可选,没有必须
归一化公式:对于每一个输入, 去除以
得到归一化后的输出
示例:
layers { name: "norm1" type: LRN bottom: "pool1" top: "norm1" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } }
如果对matlab比较熟悉的话,就应该知道im2col是什么意思。它先将一个大矩阵,重叠地划分为多个子矩阵,对每个子矩阵序列化成向量,最后得到另外一个矩阵。
看一看图就知道了:
在caffe中,卷积运算就是先对数据进行im2col操作,再进行内积运算(inner product)。这样做,比原始的卷积操作速度更快。
看看两种卷积操作的异同:
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
正则表达式提供了一些可用的匹配模式,比如忽略大小写、多行匹配等,下面这篇文章主要给大家介绍了关于python正则表达式常见的知识点,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
这篇文章主要介绍了Python matplotlib绘制散点图配置(万能模板案例),散点图是指在 回归分析中,数据点在直角坐标系平面上的分布图,散点图表示因变量随自变量而变化的大致趋势,据此可以选择合适的函数对数据点进行拟合
Python 作为一种功能强大的编程语言,因其简单易学而受到很多开发者的青睐。那么,Python的应用领域有哪些呢?概括起来,Python 的应用领域主要有如下几个。
这篇文章主要介绍了tensorflow中的梯度求解及梯度裁剪操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
继承用于指定一个类将从其父类获取其大部分或全部功能。 它是面向对象编程的一个特征。 这是一个非常强大的功能,方便用户对现有类进行几个或多个修改来创建一个新的类。新类称为子类或派生类,从其继承属性的主类称为基类或父类。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008