Python绘制散点图的具体过程和代码是什么

Admin 2022-07-27 群英技术资讯 702 次浏览

在实际应用中,我们有时候会遇到“Python绘制散点图的具体过程和代码是什么”这样的问题,我们该怎样来处理呢?下文给大家介绍了解决方法,希望这篇“Python绘制散点图的具体过程和代码是什么”文章能帮助大家解决问题。


           
散点图

散点图是指在 回归分析中,数据点在直角坐标系平面上的 分布图,散点图表示因变量随 自变量而 变化的大致趋势,据此可以选择合适的函数 对数据点进行 拟合。

用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。散点图将序列显示为一组点。值由点在 图表中的位置表示。类别由图表中的不同标记表示。散点图通常用于比较跨类别的聚合数据。

下面给出一个散点图的具体代码案例

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

plt.figure(figsize=(9,5), # (宽度 , 高度) 单位inch
dpi=120, # 清晰度 dot-per-inch
# facecolor='#CCCCCC', # 画布底色
# edgecolor='black',linewidth=0.2,frameon=True, # 画布边框
#frameon=False # 不要画布边框
)
# 设置全局中文字体
plt.rcParams['font.sans-serif'] = 'KaiTi' # 设置全局字体为中文 楷体
plt.rcParams['axes.unicode_minus'] = False # 不使用中文减号
#读取数据
crime=pd.read_csv("crimeRatesByState2005.csv")
print (list(crime.murder))#转化成列表
#删除state为United States的数据
crime2 = crime[crime.state != "United States"]
#删除state为District of Columbia的数据
crime2 = crime2[crime2.state != "District of Columbia" ]
z = list(crime2.population/10000)#取人口数据
#colors = np.random.rand(len(list(crime2.murder)))#根据谋杀率随机去颜色
cm = plt.cm.get_cmap('RdYlBu')#使用色谱RdYlBu
plt.scatter(list(crime2.murder), list(crime2.burglary), s=z,c=z,cmap = cm, linewidth = 0.5, alpha = 0.5)#绘制散点图
plt.xlabel("murder")
plt.ylabel("burglary")
plt.show()

散点图一行代码显示

# 读取数据
df = pd.read_csv('iris.csv')
# 平面坐标系的位置只能表示2维数据
x = df['sepal_length']
y = df['sepal_width']
# 根据X,Y值画散点图
plt.scatter(x,y)

加颜色的散点图

# 读取数据
df = pd.read_csv('iris.csv')
# 平面坐标系的位置只能表示2维数据
x = df['sepal_length']
y = df['sepal_width']
c = df['species'].map({'setosa':'r','versicolor':'g','virginica':'b'})
# 根据X,Y值画散点图, 用不同的颜色标识不同的分类
plt.scatter(x,y, c=c)

颜色深浅表示数值大小

# 读取数据
df = pd.read_csv('iris.csv')
# 平面坐标系的位置只能表示2维数据
x = df['sepal_length']
y = df['sepal_width']
c = df['petal_length']
# 根据X,Y值画散点图, 用颜色的深浅表示花萼的长度
plt.scatter(x,y, c=c, cmap=plt.cm.RdYlBu)

散点图显示颜色和大小

# 读取数据
df = pd.read_csv('iris.csv')
# 平面坐标系的位置只能表示2维数据
x = df['sepal_length'] # x 轴坐标
y = df['sepal_width'] # y 轴坐标
c = df['petal_length'] # 颜色color
s = df['petal_width'] # 大小size
# 根据X,Y值画散点图, 用颜色的深浅表示花萼的长度,用大小表示花萼的宽度
plt.figure(figsize=(5,5),dpi=100)
#plt.scatter(x,y, c=c, s=50) # 可以是标量,那么所有的点都一样
plt.scatter(x,y, c=c, s=s*30)

自定义图表散点图

# 读取数据
df = pd.read_csv('iris.csv')
def get_xycs(df):
# 平面坐标系的位置只能表示2维数据
x = df['sepal_length'] # x 轴坐标
y = df['sepal_width'] # y 轴坐标
c = df['petal_length'] # 颜色color
s = df['petal_width'] # 大小size
return x,y,c,s
markers = {'setosa':'o', 'versicolor':'D', 'virginica':'*'}
# 根据X,Y值画散点图, 用颜色的深浅表示花萼的长度,用大小表示花萼的宽度, 每组数据只能是一种点样式
plt.figure(figsize=(5,5),dpi=100)
#plt.scatter(x,y, c=c, s=50) # 可以是标量,那么所有的点都一样
for sp in df['species'].unique():
x,y,c,s = get_xycs(df[df['species']==sp])
plt.scatter(x,y, c=c, s=s*30, cmap=plt.cm.seismic, marker=markers[sp],label=sp)
plt.legend()

散点图万能模板

# 读取数据
df = pd.read_csv('iris.csv')
def get_xycs(df):
# 平面坐标系的位置只能表示2维数据
x = df['sepal_length'] # x 轴坐标
y = df['sepal_width'] # y 轴坐标
c = df['petal_length'] # 颜色color
s = df['petal_width'] # 大小size
return x,y,c,s
markers = {'setosa':'o', 'versicolor':'D', 'virginica':'*'}
# 根据X,Y值画散点图, 用颜色的深浅表示花萼的长度,用大小表示花萼的宽度, 每组数据只能是一种点样式
plt.figure(figsize=(5,5),dpi=100)
#plt.scatter(x,y, c=c, s=50) # 可以是标量,那么所有的点都一样
for sp in df['species'].unique():
x,y,c,s = get_xycs(df[df['species']==sp])
plt.scatter(x,y, s=s*30, cmap=plt.cm.seismic, marker=markers[sp],label=sp)
plt.legend()

其他模板

### 在二维坐标系上,位置表示(x,y)二维数据
x = df.sepal_length # x 表示花瓣长
y = df.sepal_width # y 表示花瓣宽
s = (df.petal_length * df.petal_width)*np.pi # s(size) 表示花萼面积
c = (df.petal_length * df.petal_width)*np.pi
plt.scatter(x,y,s=s*5, c=c,cmap=plt.cm.RdYlBu_r)
plt.xlabel('sepal_length')
plt.ylabel('sepal_width')

# 在二维坐标系上,位置表示(x,y)二维数据
x = df.sepal_length # x 表示花瓣长
y = df.sepal_width # y 表示花瓣宽
s = (df.petal_length * df.petal_width)*np.pi # s(size) 表示花萼面积
#print(df.species)
#colormap = {"setosa":"#FF0000", "versicolor":"green", "virginica":"b"} # 定义一个字典将species字符串映射到颜色字符串上
colormap = {"setosa":1, "versicolor":5, "virginica":6} # 定义一个字典将species字符串映射到颜色字符串上
c = df.species.map(colormap)
#print(c)
plt.scatter(x,y,s=s*5, c=c,cmap=plt.cm.coolwarm, alpha=0.7, edgecolors='face')
plt.xlabel('sepal_length')
plt.ylabel('sepal_width')

plt.scatter(df['burglary'], df['larceny_theft'],
s=df['population']*2e-5,
c=df['motor_vehicle_theft'], cmap=plt.cm.coolwarm,
edgecolors='b',
alpha=0.75)

for idx,statename in df['state'].items():
plt.text(x=df['burglary'][idx],y=df['larceny_theft'][idx]-df['population'][idx]*2e-5*0.5,s=statename,fontsize=6,ha='center',va='top')

df.plot.scatter(x='burglary',y='larceny_theft',c='motor_vehicle_theft',cmap=plt.cm.coolwarm,s=df['population']*2e-5)
for i in df.index:
if i in top5_motor_theft_index: # 偷车贼最多的5个州
plt.text(df.loc[i,'burglary']+10, df.loc[i,'larceny_theft']-10, df.loc[i,'state'], color='red') # 一个文本框


现在大家对于Python绘制散点图的具体过程和代码是什么的内容应该都有一定的认识了吧,希望这篇能对大家有所帮助。最后,想要了解更多,欢迎关注群英网络,群英网络将为大家推送更多相关的文章。 群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服