Python中如何进行数据分组

Admin 2022-07-26 群英技术资讯 426 次浏览

这篇文章主要讲解了“Python中如何进行数据分组”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python中如何进行数据分组”吧!


 



假设我们有这样一种数据:

data = [
    ("apple", 30), ("apple", 35),
    ("apple", 32), ("pear", 60),
    ("pear", 32), ("pear", 60),
    ("banana", 102), ("banana", 104)
]

# 我们希望变成如下格式
"""
[('apple', [30, 35, 32]), 
 ('pear', [60, 32, 60]), 
 ('banana', [102, 104])]
"""

如果是你的话,你会怎么做呢?很容易想到的一种解决方案是构造一个字典:

data = [
    ("apple", 30), ("apple", 35),
    ("apple", 32), ("pear", 60),
    ("pear", 32), ("pear", 60),
    ("banana", 102), ("banana", 104)
]

data_dict = {}
for name, count in data:
    if name not in data_dict:
        data_dict[name] = []
    data_dict[name].append(count)
print(data_dict)
"""
{'apple': [30, 35, 32], 
 'pear': [60, 32, 60], 
 'banana': [102, 104]}
"""
print(list(data_dict.items()))
"""
[('apple', [30, 35, 32]), 
 ('pear', [60, 32, 60]), 
 ('banana', [102, 104])]
"""

这种方案完全没有问题,不过我们还可以写的更优雅一些,也就是使用字典的 setdefault 方法:

data = [
    ("apple", 30), ("apple", 35),
    ("apple", 32), ("pear", 60),
    ("pear", 32), ("pear", 60),
    ("banana", 102), ("banana", 104)
]

data_dict = {}
for name, count in data:
    # setdefault(k, v) 含义如下
    # 当 k 不存在时,将 k: v 设置在字典中,并返回 v
    # 当 k 存在时,直接返回 k 对应值
    data_dict.setdefault(name, []).append(count)

print(list(data_dict.items()))
"""
[('apple', [30, 35, 32]), 
 ('pear', [60, 32, 60]), 
 ('banana', [102, 104])]
"""

setdefault 是一个非常方便的方法,但是使用频率却不怎么高,或者说该方法不太让人喜欢。主要是每次调用都要给一个初始值,比如代码中的空列表 []。另外这里的初始值可以任意,如果你希望添加的时候还能实现去重效果,那么就将空列表换成空集合即可。

或者我们还可以使用 defaultdict,它位于 collections 模块中。

from collections import defaultdict

data = [
    ("apple", 30), ("apple", 35),
    ("apple", 32), ("pear", 60),
    ("pear", 32), ("pear", 60),
    ("banana", 102), ("banana", 104)
]

# 里面接收一个 callable
# 当访问的 k 不存在时,返回 callable 调用之后的值
data_dict1 = defaultdict(list)
for name, count in data:
    data_dict1[name].append(count)

print(list(data_dict1.items()))
"""
[('apple', [30, 35, 32]), 
 ('pear', [60, 32, 60]), 
 ('banana', [102, 104])]
"""

# 也可以指定为 set
data_dict2 = defaultdict(set)
for name, count in data:
    data_dict2[name].add(count)

print(list(data_dict2.items()))
"""
[('apple', {32, 35, 30}), 
 ('pear', {32, 60}), 
 ('banana', {104, 102})]
"""

总的来说,defaultdict 和字典的 setdefault 方法非常类似,我们使用 setdefault 即可。

当然啦,关于分组,还有一种特殊情况,就是词频统计。假设我们想统计可迭代对象中,每个元素出现的次数该怎么做呢?

data = ["apple", "apple", "apple",
        "pear", "pear", "pear",
        "banana", "banana"]

data_dict = {}
for item in data:
    # 此处不能使用 setdefault,因为它是函数
    # .setdefault(item, 0) += 1 是不符合语法规则的
    if item not in data_dict:
        data_dict[item] = 0
    data_dict[item] += 1

print(data_dict)
"""
{'apple': 3, 'pear': 3, 'banana': 2}
"""

# 或者使用 defaultdict
from collections import defaultdict
data_dict = defaultdict(int)
for item in data:
    data_dict[item] += 1
print(data_dict)
"""
defaultdict(<class 'int'>, 
            {'apple': 3, 'pear': 3, 'banana': 2})
"""

然而说到词频统计,我们还可以使用 collections 下的 Counter 类。

from collections import Counter

data = ["apple", "apple", "apple",
        "pear", "pear", "pear",
        "banana", "banana"]

data_dict = Counter(data)
# 直接搞定,Counter 已经包含了我们之前的逻辑
print(data_dict)
"""
Counter({'apple': 3, 'pear': 3, 'banana': 2})
"""
# Counter 继承 dict,除了支持字典操作之外
# 还提供了很多其它操作,其中一个就是 most_common
# 用于选择出现频率最高的几个元素
print(data_dict.most_common(2))
"""
[('apple', 3), ('pear', 3)]
"""

还是很简单的。


到此这篇关于“Python中如何进行数据分组”的文章就介绍到这了,更多相关内容请搜索群英网络以前的文章或继续浏览下面的相关文章,希望大家以后多多支持群英网络!
群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服