如何理解python类的参数定义和数据扩展
Admin 2022-09-07 群英技术资讯 444 次浏览
本篇文章给大家带来了关于Python的相关知识,其中主要介绍了python类参数定义及数据扩展方式unsqueeze/expand,文章通过围绕主题展开详细的内容介绍,下面一起来看一下,希望对大家有帮助。
将conda环境设置为ai,conda activate ai
这个文件的由来:
由于在yolov1的pytorch实现的损失函数中,看到继承了nn.Module,并且其中两个参数不像c++那里指定类型,那么他们的类型是哪里来的
这里就是在探索这样一件事
操作逻辑:
N = box1.size(0) M = box2.size(0)
说明了它是类似一个矩阵的东西,对应的box1的定义就是`torch.rand(10,4)import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable #探究属性S,B是如何产生的,以及box1、box2是如何产生的、如何调用 class yoloLoss(nn.Module): def __init__(self,S,B): self.S=S self.B=B def compute_iot(self,box1,box2): N = box1.size(0) #调用方式就表示了变量是什么类型,这里是一个张量,其中每个元素是一个tensor,所以是N*4的张量 M = box2.size(0) print(M,N) yoloLoss1 =yoloLoss(10, 11) yoloLoss1.compute_iot(torch.rand(10,4),torch.rand(11,4))
探究unsqueeze以及expand的使用方法,unsqueeze可以增加一个纬度,但是维度的siz只是1而已,而expand就可以将数据进行复制,将数据变为n
# 获得一开始的初始化数值:tensor([[a1,a2,a3]]) nn1=torch.rand(1,3) print(nn1) # unsqueeze是解压的意思,在第i个维度上进行扩展,将其扩展为tensor([[[a1,a2,a3]]]) nn1=nn1.unsqueeze(0) print("*"*100) print(nn1) #利用expand对数据进行扩展 nn1=nn1.expand(1,3,3) print("*"*100) print(nn1)
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
本篇文章将介绍如何用openpyxl操作excel,它支持格式的表格文件,并且支持 Numpy、Pandas 等包,可用于绘制图表
在玩python学习机器时,对于那种对随机性不太敏感的模型,理论上说可以不打乱。但敏感不敏感也跟数据量级,复杂度,算法内部计算机制都有关,目前并没有一个经纬分明的算法随机度敏感度列表。既然打乱数据并不会得到一个更差的结果,一般推荐的做法就是打乱全量数据。那怎么打乱呢?
这篇文章主要介绍了Python网络编程之ZeroMQ知识总结,文中有非常详细的代码示例,对正在学习python的小伙伴们有非常好的帮助,需要的朋友可以参考下
小伙伴们日常工作中都必不可少地使用Python实现一些简单的功能,但是不同的人所编写的代码执行效率往往是不同的,下面这篇文章主要给大家介绍了4个Python中高效的技巧,需要的朋友可以参考下
不少朋友应该都有玩过井字棋游戏,那么我们学习了python,能否用python写一个井字棋小游戏呢?其实,python实现简单的井字棋小游戏并不困难,接下来就给大家分享使用Python实现井字棋小游戏的代码,感兴趣的朋友可以参考。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008