OpenCV中Canny边缘检测怎么理解,实现是怎样的

Admin 2022-06-06 群英技术资讯 333 次浏览

关于“OpenCV中Canny边缘检测怎么理解,实现是怎样的”的知识有一些人不是很理解,对此小编给大家总结了相关内容,具有一定的参考借鉴价值,而且易于学习与理解,希望能对大家有所帮助,有这个方面学习需要的朋友就继续往下看吧。


1. Canny 边缘检测理论

Canny 是一种常用的边缘检测算法. 其是在 1986 年 John F.Canny 提出的.
Canny 是一种 multi-stage 算法,分别如下:

具体流程:

  • 高斯滤波:平滑图像,消除噪声
  • 梯度和方向计算:利用Sobel算子计算每个像素点的梯度和方向
  • 非极大值抑制:消除边缘检测带来的杂散相应
  • 双阈值:检测真正和潜在的边缘
  • 抑制弱边缘:通过抑制弱边缘来完成边缘检测

1.1、高斯滤波

高斯滤波最重要的还是卷积核核,通常使用高斯平滑滤波器卷积降噪,这里以size=3的高斯内核为例:这里做了归一化处理(元素和为 1)

高斯去噪其实就是一个低通滤波器,滤除高频噪声。

1.2、Sobel算子计算梯度和方向

计算方法:

这里 是指水平方向的掩码模板,是指垂直方向的掩码模板。根据上面的模板可以计算出图像梯度幅值和方向。

1.3、非极大值抑制(定位准确的边缘同时可缩小边缘线宽)

非极大值抑制是进行边缘检测的重要步骤,通俗的来说,就是获取局部的最大值,将非极大值所对应的灰度值设置为背景像素点。像素邻近区域满足梯度值的局部最优值判断为该像素的边缘,对非极大值相关信息进行抑制。利用这个准则可以剔除大部分的非边缘点。

简单的说呢?就是保留梯度大的像素点点,对于那些在边缘旁边的杂散点,梯度相对较小,利用非极大值抑制就可以很好的去除杂散点。

1.4、双阈值检测

这里的双阈值并不是说介于阈值之间的像素保留,外面的的去除。这里的阈值检测有所不同。

分析:

  • 梯度大于maxVal的像素点保留,视为边缘
  • 梯度小于minVal的像素点弃用,不视为边缘
  • 梯度介于两者之间的,分情况判断:
  • 四周有包含大于maxVal的像素点,视为边缘
  • 四周没有大于maxVal的像素点,不视为边缘

根据上面的分析,我们可以得出来:A, D点位边界; B, C点不是边界。

注意:

具体这两个值怎么设置,我们就要分析两个值变化对图像的影响。

  • maxVal: 带来最明显的差异,增大maxVal无疑会导致原来的边界点可能会直接消失。但这种消失时是成片消失。
  • minVal: 增大minVal,会导致有些待定像素点被弃用,也就是靠近边界像素点的介于双阈值之间的被弃用。导致的现象就是边界出现破损,这种非成片消失。只是边界信息不完整。

下面以 video = cv2.Canny(img, 80, 250) 为例:分别增大minVal和maxVal。

增大minVal: (边界出现缺损)

增大maxVal: (边界出现成片消失,边界信息完整)

总结:

在实际应用中,观察梯度图像,如果边界信息缺损,那么适当的减小minVal;如果有不想要的区域出现,那么适当的增加MaxVal。

2. OpenCV 之 Canny 边缘检测

OpenCV 提供了 cv2.canny() 函数.

edge = cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient ]]])
  • 参数 Image - 输入图片,必须为单通道的灰度图
  • 参数 threshold1 和 threshold2 - 分别对应于阈值 minVal 和 maxVal
  • 参数 apertureSize - 用于计算图片提取的 Sobel kernel 尺寸. 默认为 3.
  • 参数 L2gradient - 指定计算梯度的等式. 当参数为 True 时,采用 1.2 中的梯度计算公式,其精度更高;否则采用的梯度计算公式为:. 该参数默认为 False.

具体代码:

import cv2
import numpy as np
import matplotlib.pyplot as plt
 
img = cv2.imread('test.jpg', 0)
edges = cv2.Canny(img, 100, 200)
 
plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
 
plt.subplot(122),plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
 
plt.show()

带 minVal 和 maxVal 滑动条的使用:

import numpy as np
import cv2
 
def nothing(x):
    pass
 
img=cv2.imread('test.jpg',0)
 
cv2.namedWindow('res')
cv2.createTrackbar('min','res',0,25,nothing)
cv2.createTrackbar('max','res',0,25,nothing)
while(1):
    if cv2.waitKey(1) & 0xFF == 27:
        break
    maxVal=cv2.getTrackbarPos('max','res')
    minVal=cv2.getTrackbarPos('min','res')
    canny=cv2.Canny(img,10*minVal,10*maxVal)
    cv2.imshow('res',canny)
cv2.destroyAllWindows()


这篇关于“OpenCV中Canny边缘检测怎么理解,实现是怎样的”的文章就介绍到这了,更多相关的内容,欢迎关注群英网络,小编将为大家输出更多高质量的实用文章! 群英智防CDN,智能加速解决方案
标签: Canny边缘检测

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服