python多线程和多进程怎么理解,如何使用?
Admin 2021-05-25 群英技术资讯 524 次浏览
很多新手学习python时,对于多进程和多线程不是很清楚,为了帮助大家更好的学习和理解多进程和多线程,这篇文章就给大家介绍关于PHP多进程和多线程的使用,下面有详细的介绍以及代码,供大家参考学习。
进程是系统进行资源分配的最小单位,线程是系统进行调度执行的最小单位;
一个应用程序至少包含一个进程,一个进程至少包含一个线程;
每个进程在执行过程中拥有独立的内存空间,而一个进程中的线程之间是共享该进程的内存空间的;
Python的多进程依赖于multiprocess模块;使用多进程可以利用多个CPU进行并行计算;
实例:
from multiprocessing import Process import os import time def long_time_task(i): print('子进程: {} - 任务{}'.format(os.getpid(), i)) time.sleep(2) print("结果: {}".format(8 ** 20)) if __name__=='__main__': print('当前母进程: {}'.format(os.getpid())) start = time.time() p1 = Process(target=long_time_task, args=(1,)) p2 = Process(target=long_time_task, args=(2,)) print('等待所有子进程完成。') p1.start() p2.start() p1.join() p2.join() end = time.time() print("总共用时{}秒".format((end - start)))
新创建进程和进程间切换是需要消耗资源的,所以应该控制进程数量;
同时可运行的进程数量收到CPU核数限制;
使用进程池pool创建进程:
使用进程池可以避免手工进行进程的创建的麻烦,默认数量是CPU核数;
Pool类可以提供指定数量的进程供用户使用,当有新的请求被提交到Pool中的时候,如果进程池还没有满,就会创建一个新的进程来执行请求;如果池已经满了,请求就会等待,等到有空闲进程可以使用时,才会执行请求;
几个方法:
1.apply_async
作用是向进程池提交需要执行的函数和参数,各个进程采用非阻塞的异步方式调用,每个进程只管自己运行,是默认方式;
2.map
会阻塞进程直到返回结果;
3.map_sunc
非阻塞进程;
4.close
关闭进程池,不再接受任务;
5.terminate
结束进程;
6.join
主进程阻塞,直到子进程执行结束;
实例:
from multiprocessing import Pool, cpu_count import os import time def long_time_task(i): print('子进程: {} - 任务{}'.format(os.getpid(), i)) time.sleep(2) print("结果: {}".format(8 ** 20)) if __name__=='__main__': print("CPU内核数:{}".format(cpu_count())) print('当前母进程: {}'.format(os.getpid())) start = time.time() p = Pool(4) for i in range(5): p.apply_async(long_time_task, args=(i,)) print('等待所有子进程完成。') p.close() p.join() end = time.time() print("总共用时{}秒".format((end - start)))
在join之前,必须使用close或者terminate,让进程池不再接受任务;
通常,进程之间是相互独立的,每个进程都有独立的内存。通过共享内存(nmap模块),进程之间可以共享对象,使多个进程可以访问同一个变量(地址相同,变量名可能不同)。多进程共享资源必然会导致进程间相互竞争,所以应该尽最大可能防止使用共享状态。还有一种方式就是使用队列queue来实现不同进程间的通信或数据共享,这一点和多线程编程类似。
下例这段代码中中创建了2个独立进程,一个负责写(pw), 一个负责读(pr), 实现了共享一个队列queue。
from multiprocessing import Process, Queue import os, time, random # 写数据进程执行的代码: def write(q): print('Process to write: {}'.format(os.getpid())) for value in ['A', 'B', 'C']: print('Put %s to queue...' % value) q.put(value) time.sleep(random.random()) # 读数据进程执行的代码: def read(q): print('Process to read:{}'.format(os.getpid())) while True: value = q.get(True) print('Get %s from queue.' % value) if __name__=='__main__': # 父进程创建Queue,并传给各个子进程: q = Queue() pw = Process(target=write, args=(q,)) pr = Process(target=read, args=(q,)) # 启动子进程pw,写入: pw.start() # 启动子进程pr,读取: pr.start() # 等待pw结束: pw.join() # pr进程里是死循环,无法等待其结束,只能强行终止: pr.terminate()
python 3中的多进程编程主要依靠threading模块。创建新线程与创建新进程的方法非常类似。threading.Thread方法可以接收两个参数, 第一个是target,一般指向函数名,第二个时args,需要向函数传递的参数。对于创建的新线程,调用start()方法即可让其开始。我们还可以使用current_thread().name打印出当前线程的名字。
import threading import time def long_time_task(i): print('当前子线程: {} 任务{}'.format(threading.current_thread().name, i)) time.sleep(2) print("结果: {}".format(8 ** 20)) if __name__=='__main__': start = time.time() print('这是主线程:{}'.format(threading.current_thread().name)) thread_list = [] for i in range(1, 3): t = threading.Thread(target=long_time_task, args=(i, )) thread_list.append(t) for t in thread_list: t.start() for t in thread_list: t.join() end = time.time() print("总共用时{}秒".format((end - start)))
一个进程所含的不同线程间共享内存,这就意味着任何一个变量都可以被任何一个线程修改,因此线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。如果不同线程间有共享的变量,其中一个方法就是在修改前给其上一把锁lock,确保一次只有一个线程能修改它。threading.lock()方法可以轻易实现对一个共享变量的锁定,修改完后release供其它线程使用。
import threading class Account: def __init__(self): self.balance = 0 def add(self, lock): # 获得锁 lock.acquire() for i in range(0, 100000): self.balance += 1 # 释放锁 lock.release() def delete(self, lock): # 获得锁 lock.acquire() for i in range(0, 100000): self.balance -= 1 # 释放锁 lock.release() if __name__ == "__main__": account = Account() lock = threading.Lock() # 创建线程 thread_add = threading.Thread(target=account.add, args=(lock,), name='Add') thread_delete = threading.Thread(target=account.delete, args=(lock,), name='Delete') # 启动线程 thread_add.start() thread_delete.start() # 等待线程结束 thread_add.join() thread_delete.join() print('The final balance is: {}'.format(account.balance))
from queue import Queue import random, threading, time # 生产者类 class Producer(threading.Thread): def __init__(self, name, queue): threading.Thread.__init__(self, name=name) self.queue = queue def run(self): for i in range(1, 5): print("{} is producing {} to the queue!".format(self.getName(), i)) self.queue.put(i) time.sleep(random.randrange(10) / 5) print("%s finished!" % self.getName()) # 消费者类 class Consumer(threading.Thread): def __init__(self, name, queue): threading.Thread.__init__(self, name=name) self.queue = queue def run(self): for i in range(1, 5): val = self.queue.get() print("{} is consuming {} in the queue.".format(self.getName(), val)) time.sleep(random.randrange(10)) print("%s finished!" % self.getName()) def main(): queue = Queue() producer = Producer('Producer', queue) consumer = Consumer('Consumer', queue) producer.start() consumer.start() producer.join() consumer.join() print('All threads finished!') if __name__ == '__main__': main()
对于IO密集型操作,大部分消耗时间其实是等待时间,在等待时间中CPU是不需要工作的,那你在此期间提供双CPU资源也是利用不上的,相反对于CPU密集型代码,2个CPU干活肯定比一个CPU快很多。那么为什么多线程会对IO密集型代码有用呢?这时因为python碰到等待会释放GIL供新的线程使用,实现了线程间的切换。
现在大家对于python多线程和多进程的使用应该都有所了解了,上述示例具有一定的借鉴价值,有需要的朋友可以参考学习,希望对大家理解多线程和多进程有帮助。
文本转载自脚本之家
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
本文将为大家简单介绍一下Python中的一个轻量级搜索工具Whoosh,并给出相应的使用示例代码,感兴趣的小伙伴可以跟随小编一起学习一下
今天给大家带来的是关于Python的相关知识,文章围绕着如何使用Python脚本实现自动登录校园网展开,文中有非常详细的介绍及代码示例,需要的朋友可以参考下
这篇文章主要介绍了Python合并Excel表(多sheet)的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
这篇文章主要介绍了Python数据分析之Pandas Series对象,文章基于python的相关资料展开详细内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
这篇文章介绍了Python字节串类型bytes及用法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008