Python Seaborn怎样画山脊图,操作是什么
Admin 2022-05-23 群英技术资讯 462 次浏览
山脊图一般由垂直堆叠的折线图组成,这些折线图中的折线区域间彼此重叠,此外它们还共享相同的x轴.
山脊图经常以一种相对不常见且非常适合吸引大家注意力的紧凑图的形式表现。观察上图,我们给其起名叫Ridge plot是
非常恰当的,因为上述图表看起来确实很像山的脊背.此外,上述图像还有另一个称呼叫做Joy Plots–这主要是因为Joy Division
乐队在如下专辑封面上采用了这种可视化形式.
在介绍完山脊图的由来背景后,现在让我们来举个例子。我们使用以下数据集,主要包含 Netflix
的作品及对应的 IMDB
分数。
import matplotlib.pyplot as plt import seaborn as sns import pandas as pd df = pd.read_csv('./data/film.csv') languages = ['English', 'Hindi', 'Spanish', 'French', 'Italian', 'Portuguese'] df_filtered = df[df['Language'].isin(languages)] df_filtered
运行结果如下:
上表中从左往右,依次为ID,电影名称,电影类型,首映日期,电影长度,IMDB评分,以及电影语种.
接下来我们首先使用 Seaborns FacetGrid
库来为每个语言类别的电影创建不同IMDB下的概率密度分布曲线图。实现这个功能很简单,仅需要对数据表中相应名称字段来按值进行分组统计即可。
代码如下:
sns.set_theme(style="white") g = sns.FacetGrid(df_filtered, row="Language") g.map_dataframe(sns.kdeplot, x="IMDB Score") g.set(ylabel="")
结果如下:
上述实现采用的为默认的参数配置,横轴表示IMDB
分数,纵轴表示对应不同语种电影在不同IMDB得分下的概率. 从上述图例中可以看出单个语种电影评分的概率密度分布,但是很难查看不同语种间的对比分布。
接着我们尝试来改进显示效果,我们通过设置FacetGrid
函数中相应的参数来让图表变得更宽更短。
代码如下:
sns.set_theme(style="white") g = sns.FacetGrid(df_filtered, row="Language", aspect=9, height=1.2) g.map_dataframe(sns.kdeplot, x="IMDB Score") g.set(ylabel="")
结果如下:
上述改进虽然可以让数据间的对比变得明显一些,但是这个可视化从视觉效果上看并没有太大的吸引力。
观察上图,我们其实并没有多少人去关注左侧的Y轴信息,我们更关注的是数据的形状.这就意味着我们这里可以删除Y轴.
代码如下:
sns.set_theme(style="white") g = sns.FacetGrid(df_filtered, row="Language", aspect=9, height=1.2) g.map_dataframe(sns.kdeplot, x="IMDB Score") g.set_titles("") g.set(yticks=[],ylabel="") g.despine(left=True)
运行结果如下:
经过我们的优化,上述不同语种电影的IMDB
得分概率密度分布还是不够直观.
接下来我们一步一步来介绍我们的终结法宝–山脊图.
首先,我们需要确保背景是透明的。
sns.set_theme(style="white", rc={"axes.facecolor": (0, 0, 0, 0)})
接着,我们需要填充线条的内部区域。
g.map_dataframe(sns.kdeplot, x="IMDB Score", fill=True, alpha=1)
上述操作后,不同语种间的区域会出现重叠,这时我们还需要区分重叠部分。
我们通过以下代码进行区分:
sns.set_theme(style="white", rc={"axes.facecolor": (0, 0, 0, 0)}) g = sns.FacetGrid(df_filtered, row="Language", aspect=9, height=1.2) g.map_dataframe(sns.kdeplot, x="IMDB Score", fill=True, alpha=1) g.map_dataframe(sns.kdeplot, x="IMDB Score", color='black') g.fig.subplots_adjust(hspace=-.5) g.set_titles("") g.set(yticks=[]) g.despine(left=True)
运行结果如下:
到目前位置,我们实现了我们第一版的山脊图,接着我们可以根据需要来自定义扩展它。FacetGrid
函数非常适合创建多个可视化图例,并且 .map 和 .map_dataframe
方法可以让我们与所有子图进行交互。
代码如下:
sns.set_theme(style="white", rc={"axes.facecolor": (0, 0, 0, 0), 'axes.linewidth':2}) palette = sns.color_palette("Set2", 12) g = sns.FacetGrid(df_filtered, palette=palette, row="Language", hue="Language", aspect=9, height=1.2) g.map_dataframe(sns.kdeplot, x="IMDB Score", fill=True, alpha=1) g.map_dataframe(sns.kdeplot, x="IMDB Score", color='black') def label(x, color, label): ax = plt.gca() ax.text(0, .2, label, color='black', fontsize=13, ha="left", va="center", transform=ax.transAxes) g.map(label, "Language") g.fig.subplots_adjust(hspace=-.5) g.set_titles("") g.set(yticks=[], xlabel="IMDB Score") g.despine( left=True) plt.suptitle('Netflix Originals - IMDB Scores by Language', y=0.98)
运行结果如下:
最后,我们可以使用下面代码来复制Joy Division
专辑封面的可视化效果。
代码如下:
import pandas as pd import seaborn as sns import matplotlib.pyplot as plt if __name__ == "__main__": url = "./data/pulsar.csv" df = pd.read_csv(url, header=None) df = df.stack().reset_index() df.columns = ['idx', 'x', 'y'] sns.set_theme(rc={"axes.facecolor": (0, 0, 0, 0), 'figure.facecolor':'#000000', 'axes.grid':False}) g = sns.FacetGrid(df, row='idx', aspect=50, height=0.4) # Draw the densities in a few steps g.map(sns.lineplot, 'x', 'y', clip_on=False, alpha=1, linewidth=1.5) g.map(plt.fill_between, 'x', 'y', color='#000000') g.map(sns.lineplot, 'x', 'y', clip_on=False, color='#ffffff', lw=2) # Set the subplots to overlap g.fig.subplots_adjust(hspace=-0.95) g.set_titles("") g.set(yticks=[], xticks=[], ylabel="", xlabel="") g.despine(bottom=True, left=True) plt.savefig('joy.png', facecolor='#000000')
运行结果如下:
总的来说,山脊图非常适合关注数据的分布对比。山脊图以吸引人的美学可以引起观众的共鸣,使它们成为向用户介绍数据分布对比分析时的绝佳选择。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
本篇文章给大家带来了关于Python的相关知识,主要介绍了python中namedtuple函数的用法解析,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感兴趣的小伙伴可以参考一下。
用Python怎样实现定时任务?有些需求需要我们每隔一段时间就要执行一段程序,或者是往复循环执行某一个任务,那么这要怎样实现呢?下面小编就给大家介绍一下用python 实现定时任务的四个办法,感兴趣的朋友就往下看吧。
这篇文章给大家分享的是有关Python中Numpy怎么用的内容。Numpy是Python学习的基础内容,小编觉得挺实用的,因此分享给大家做个参考,接下来一起跟随小编看看吧。
这篇文章主要介绍了Python连接MySQL数据库后的一些基本操作,并以银行管理系统项目为例,为大家具体介绍了一下部分功能的实现,文中的示例代码具有一定的学习价值,感兴趣的可以了解一下
这篇文章主要介绍了python 管理系统实现mysql交互,本文通过实例代码图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008