Pandas如何按周、月、季度、年统计数据,方法是什么
Admin 2022-05-21 群英技术资讯 913 次浏览
将日期转为时间格式 并设置为索引
import pandas as pd data=pd.read_excel('5\TB201812.xls',usecols=['订单创建时间','总金额']) print(data) data['订单创建时间']=pd.to_datetime(data['订单创建时间']) data=data.set_index('订单创建时间') print(data)
按周、月、季度、年统计数据
import pandas as pd data=pd.read_excel('5\TB201812.xls',usecols=['订单创建时间','总金额']) data['订单创建时间']=pd.to_datetime(data['订单创建时间']) data=data.set_index('订单创建时间') print(data.resample('w').sum()) print(data.resample('m').sum()) print(data.resample('Q').sum()) print(data.resample('AS').sum())
使用to_period()方法 优化
按月、季度和年显示数据(不统计数据)
import pandas as pd data=pd.read_excel('5\TB201812.xls',usecols=['订单创建时间','总金额']) data['订单创建时间']=pd.to_datetime(data['订单创建时间']) data=data.set_index('订单创建时间') print(data.resample('w').sum().to_period('w')) print(data.resample('m').sum().to_period('m')) print(data.resample('q').sum().to_period('q')) print(data.resample('as').sum().to_period('a'))
与之前相比 日期的显示方式发生了改变
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
Python内置函数,chr() 用一个整数作参数,返回一个对应的字符。
文件操作是我们开发中必不可少的一项需求。本文主要给大家介绍了关于Python常见的一些文件操作,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
多数情况下,仅仅一个判断条件难以满足我们接下来的操作,通常都是多个条件下执行后面的语句。由于 python 并不支持 switch 语句,所以多个条件判断,只能用 elif 来实现,接下来我们就来看看如何用if语句判断多个条件。
支持向量机 (Support Vector Machine, SVM) 是一种监督学习技术,它通过根据指定的类对训练数据进行最佳分离,从而在高维空间中构建一个或一组超平面。本文将介绍通过SVM算法实现手写数字的识别,需要的可以了解一下
阈值分割法是一种基于区域的图像分割技术,原理是把图像像素点分为若干类。本文将利用Python+OpenCV实现阈值分割,感兴趣的可以了解一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008