numpy中setdiff1d函数的功能是什么,如何使用?
Admin 2021-11-24 群英技术资讯 588 次浏览
这篇文章我们来了解一下Python numpy中setdiff1d函数的相关内容,下文介绍了setdiff1d函数的功能、语法、以及使用示例。有需要的朋友可以参考了解看看,接下来就跟随小编一起学习一下吧!
setdiff1d(ar1, ar2, assume_unique=False)
1.功能:找到2个数组中集合元素的差异。
2.返回值:在ar1中但不在ar2中的已排序的唯一值。
3.参数:
ar1:array_like 输入数组。
ar2:array_like 输入比较数组。
assume_unique:bool。如果为True,则假定输入数组是唯一的,即可以加快计算速度。 默认值为False。
a = np.array([1,2,3]) b = np.array([4,5,6]) c = np.setdiff1d(a, b) print(c)#[1 2 3] a = np.array([1,2,3]) b = np.array([1,2,3]) c = np.setdiff1d(a, b) print(c)#[] a = np.array([1,2,3]) b = np.array([2,3,4]) c = np.setdiff1d(a, b) print(c)#[1] a = np.array([1,2,3,4]) b = np.array([3,4,5,6]) c = np.setdiff1d(a, b) print(c)#[1 2] a = np.array([1,2,3,2,4,1]) b = np.array([3,4,5,6]) c = np.setdiff1d(a, b) print(c)#[1 2] a = np.array([8,2,3,2,4,1]) b = np.array([7,4,5,6,3]) c = np.setdiff1d(a, b) print(c)#[1 2 8]
可以从最后看出返回的值从小到大排序,并且唯一。(8在a的第1位,2在a中重复了2次)
a = np.array([3,2,1]) b = np.array([4,5,6]) c = np.setdiff1d(a, b,True) print(c)#[3 2 1] a = np.array([8,2,3,2,4,1]) b = np.array([7,4,5,6,3]) c = np.setdiff1d(a, b,True) print(c)#[8 2 2 1] a = np.array([8,2,3,4,2,4,1]) b = np.array([7,9,5,6,3]) c = np.setdiff1d(a, b,True) print(c)#[8 2 4 2 4 1]
可以看出把在a中的但是不在b中的元素按a中的顺序排序,并且不合并重复的元素,即假定输入数组也是唯一的,因此相比于False确实提升了运算速度。
import numpy as np def main(): a = np.array([1,2,3]) b = np.array([4,5,6]) c = np.setdiff1d(a, b) print(c)#[1 2 3] a = np.array([1,2,3]) b = np.array([1,2,3]) c = np.setdiff1d(a, b) print(c)#[] a = np.array([1,2,3]) b = np.array([2,3,4]) c = np.setdiff1d(a, b) print(c)#[1] a = np.array([1,2,3,4]) b = np.array([3,4,5,6]) c = np.setdiff1d(a, b) print(c)#[1 2] a = np.array([1,2,3,2,4,1]) b = np.array([3,4,5,6]) c = np.setdiff1d(a, b) print(c)#[1 2] a = np.array([8,2,3,2,4,1]) b = np.array([7,4,5,6,3]) c = np.setdiff1d(a, b) print(c)#[1 2 8] a = np.array([3,2,1]) b = np.array([4,5,6]) c = np.setdiff1d(a, b,True) print(c)#[3 2 1] a = np.array([8,2,3,2,4,1]) b = np.array([7,4,5,6,3]) c = np.setdiff1d(a, b,True) print(c)#[8 2 2 1] a = np.array([8,2,3,4,2,4,1]) b = np.array([7,9,5,6,3]) c = np.setdiff1d(a, b,True) print(c)#[8 2 4 2 4 1] if __name__ == '__main__': main()
补充:Python编程之numpy库函数in1d的使用
最近利用Python作数值分析时使用到numpy库下的in1d函数。in1d函数与excel中vlookup函数和MATLAB中ismember函数有相似之处。其作用在于在序列B中寻找与序列A相同的值,并返回一逻辑值(True,False)或逻辑值构成的向量。
设mask为逻辑值向量,矩阵x的第一列为待查找向量,d为被查询向量(或值),即查找x中与d中指定元素相同的值,并返回逻辑值向量mask。mask是由一系列True和False值构成,True代表找到相同的值,而False代表没找到相同的值。演示如下:
mask= np.in1d(x.values[:,1],d[1],invert=False) ##x为DataFrame型数据,x.values[:,1]表示取第二列值 x_temp=x[mask]
示取第二列值
x_temp=x[mask]
该例旨在查找 x 的第二列值中与d向量中第二个元素相同的部分 ,并返回mask逻辑向量;然后x_temp返回x中mask逻辑值为True的行。
mask向量的类型为bool,查看具体值下图所示:
值得注意的地方在于in1d函数中invert参数的设置。当invert=True时,mask中的元素值为True的部分对x.values[:,1]中与当前查找的元素d[i]不同的部分(i为当前查找位置),相同的部分则为false;当invert=False时,mask中的元素值为True的部分对x.values[:,1]中与当前查找的元素d[i]相同的部分(i为当前查找位置)。
演示见下图:
当mask= np.in1d(x.values[:,1],d[2],invert=True)
当mask= np.in1d(x.values[:,1],d[2],invert=False)时
关于Python numpy中setdiff1d函数的内容就介绍到这,感兴趣的朋友可以了解看看,希望大家阅读完这篇文章能有所收获,想要了解更多大家可以关注其它的相关文章。
文本转载自脚本之家
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
python执行系统命令的方法有哪些?一些新手对于python执行系统命令不是很了解,所以这篇文章就给大家介绍一下python执行系统命令的常见4种方法,感兴趣的朋友可以参考。
这篇文章主要介绍了python编程开发之类型转换convert用法,结合实例形式分析了Python中常见的数据类型及类型转换convert的具体使用方法,需要的朋友可以参考下
Matplotlib是一个强大的Python绘图和数据可视化的工具包,下面这篇文章主要给大家介绍了关于Python高级数据分析之pandas和matplotlib绘图的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
关键字nonlocal在Python 2 x中,闭包只能读外部函数的变量,而不能改写它。为了解决这个问题,Python 3 x引入了nonlocal关键字,在闭包内
pyqtSignal的基本使用,一些朋友可能会遇到这方面的问题,对此在下文小编向大家来讲解一下,内容详细,易于理解,希望大家阅读完这篇能有收获哦,有需要的朋友就往下看吧!
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008