pytorch中的numel函数怎样使用?
Admin 2021-09-06 群英技术资讯 1077 次浏览
pytorch是一个python优先的深度学习框架,用于自然语言应用程序。这篇文章主要介绍pytorch中的numel函数如何使用的内容,下文有numel函数用法实例,感兴趣的朋友可以参考,接下来小编带着大家一起了解看看。
import torch x = torch.randn(3,3) print("number elements of x is ",x.numel()) y = torch.randn(3,10,5) print("number elements of y is ",y.numel())
输出:
number elements of x is 9
number elements of y is 150
27和150分别位x和y中各有多少个元素或变量
补充:pytorch获取张量元素个数numel()的用法
numel就是"number of elements"的简写。
import torch a = torch.randn(1, 2, 3, 4) b = a.numel() print(type(b)) # int print(b) # 24
通过numel()函数,我们可以迅速查看一个张量到底又多少元素。
补充:pytorch 卷积结构和numel()函数
from torch import nn class CNN(nn.Module): def __init__(self, num_channels=1, d=56, s=12, m=4): super(CNN, self).__init__() self.first_part = nn.Sequential( nn.Conv2d(num_channels, d, kernel_size=3, padding=5//2), nn.Conv2d(num_channels, d, kernel_size=(1,3), padding=5//2), nn.Conv2d(num_channels, d, kernel_size=(3,1), padding=5//2), nn.PReLU(d) ) def forward(self, x): x = self.first_part(x) return x model = CNN() for m in model.first_part: if isinstance(m, nn.Conv2d): # print('m:',m.weight.data) print('m:',m.weight.data[0]) print('m:',m.weight.data[0][0]) print('m:',m.weight.data.numel()) #numel() 计算矩阵中元素的个数 结果: m: tensor([[[-0.2822, 0.0128, -0.0244], [-0.2329, 0.1037, 0.2262], [ 0.2845, -0.3094, 0.1443]]]) #卷积核大小为3x3 m: tensor([[-0.2822, 0.0128, -0.0244], [-0.2329, 0.1037, 0.2262], [ 0.2845, -0.3094, 0.1443]]) #卷积核大小为3x3 m: 504 # = 56 x (3 x 3) 输出通道数为56,卷积核大小为3x3 m: tensor([-0.0335, 0.2945, 0.2512, 0.2770, 0.2071, 0.1133, -0.1883, 0.2738, 0.0805, 0.1339, -0.3000, -0.1911, -0.1760, 0.2855, -0.0234, -0.0843, 0.1815, 0.2357, 0.2758, 0.2689, -0.2477, -0.2528, -0.1447, -0.0903, 0.1870, 0.0945, -0.2786, -0.0419, 0.1577, -0.3100, -0.1335, -0.3162, -0.1570, 0.3080, 0.0951, 0.1953, 0.1814, -0.1936, 0.1466, -0.2911, -0.1286, 0.3024, 0.1143, -0.0726, -0.2694, -0.3230, 0.2031, -0.2963, 0.2965, 0.2525, -0.2674, 0.0564, -0.3277, 0.2185, -0.0476, 0.0558]) bias偏置的值 m: tensor([[[ 0.5747, -0.3421, 0.2847]]]) 卷积核大小为1x3 m: tensor([[ 0.5747, -0.3421, 0.2847]]) 卷积核大小为1x3 m: 168 # = 56 x (1 x 3) 输出通道数为56,卷积核大小为1x3 m: tensor([ 0.5328, -0.5711, -0.1945, 0.2844, 0.2012, -0.0084, 0.4834, -0.2020, -0.0941, 0.4683, -0.2386, 0.2781, -0.1812, -0.2990, -0.4652, 0.1228, -0.0627, 0.3112, -0.2700, 0.0825, 0.4345, -0.0373, -0.3220, -0.5038, -0.3166, -0.3823, 0.3947, -0.3232, 0.1028, 0.2378, 0.4589, 0.1675, -0.3112, -0.0905, -0.0705, 0.2763, 0.5433, 0.2768, -0.3804, 0.4855, -0.4880, -0.4555, 0.4143, 0.5474, 0.3305, -0.0381, 0.2483, 0.5133, -0.3978, 0.0407, 0.2351, 0.1910, -0.5385, 0.1340, 0.1811, -0.3008]) bias偏置的值 m: tensor([[[0.0184], [0.0981], [0.1894]]]) 卷积核大小为3x1 m: tensor([[0.0184], [0.0981], [0.1894]]) 卷积核大小为3x1 m: 168 # = 56 x (3 x 1) 输出通道数为56,卷积核大小为3x1 m: tensor([-0.2951, -0.4475, 0.1301, 0.4747, -0.0512, 0.2190, 0.3533, -0.1158, 0.2237, -0.1407, -0.4756, 0.1637, -0.4555, -0.2157, 0.0577, -0.3366, -0.3252, 0.2807, 0.1660, 0.2949, -0.2886, -0.5216, 0.1665, 0.2193, 0.2038, -0.1357, 0.2626, 0.2036, 0.3255, 0.2756, 0.1283, -0.4909, 0.5737, -0.4322, -0.4930, -0.0846, 0.2158, 0.5565, 0.3751, -0.3775, -0.5096, -0.4520, 0.2246, -0.5367, 0.5531, 0.3372, -0.5593, -0.2780, -0.5453, -0.2863, 0.5712, -0.2882, 0.4788, 0.3222, -0.4846, 0.2170]) bias偏置的值 '''初始化后''' class CNN(nn.Module): def __init__(self, num_channels=1, d=56, s=12, m=4): super(CNN, self).__init__() self.first_part = nn.Sequential( nn.Conv2d(num_channels, d, kernel_size=3, padding=5//2), nn.Conv2d(num_channels, d, kernel_size=(1,3), padding=5//2), nn.Conv2d(num_channels, d, kernel_size=(3,1), padding=5//2), nn.PReLU(d) ) self._initialize_weights() def _initialize_weights(self): for m in self.first_part: if isinstance(m, nn.Conv2d): nn.init.normal_(m.weight.data, mean=0.0, std=math.sqrt(2/(m.out_channels*m.weight.data[0][0].numel()))) nn.init.zeros_(m.bias.data) def forward(self, x): x = self.first_part(x) return x model = CNN() for m in model.first_part: if isinstance(m, nn.Conv2d): # print('m:',m.weight.data) print('m:',m.weight.data[0]) print('m:',m.weight.data[0][0]) print('m:',m.weight.data.numel()) #numel() 计算矩阵中元素的个数 结果: m: tensor([[[-0.0284, -0.0585, 0.0271], [ 0.0125, 0.0554, 0.0511], [-0.0106, 0.0574, -0.0053]]]) m: tensor([[-0.0284, -0.0585, 0.0271], [ 0.0125, 0.0554, 0.0511], [-0.0106, 0.0574, -0.0053]]) m: 504 m: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) m: tensor([[[ 0.0059, 0.0465, -0.0725]]]) m: tensor([[ 0.0059, 0.0465, -0.0725]]) m: 168 m: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) m: tensor([[[ 0.0599], [-0.1330], [ 0.2456]]]) m: tensor([[ 0.0599], [-0.1330], [ 0.2456]]) m: 168 m: tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
以上就是关于python的numel函数的用法介绍,上述实例有一定的参考价值,有需要的朋友可以借鉴参考,希望对大家学习python有帮助,想要了解更多python函数的内容,请搜索群英网络以前的文章或继续浏览其他相关的文章。
文本转载自脚本之家
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
内容介绍0.学习目标1.双向链表简介1.1双向链表介绍1.2双向链表结点类1.3双向链表优缺点2.双向链表实现2.1双向链表的初始化2.2获取双向链表长度2.3读取指定位置元素2.4
这篇文章主要为大家详细介绍了python实现双向链表原理,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
本篇文章给大家带来了关于Python的相关知识,主要介绍了Python如何用NumPy读取和保存点云数据,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下。
这篇文章主要为大家介绍了python区块链实现简版网络的详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
程序要实现人机交互功能,需能够向显示设备输出有关信息及提示,同时也要能够接收从键盘输入的数据。Python提供了用于实现输入/输出功能的函数input0和print0,下面分别对这两个函数进行介绍。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008