TensorFlow中指定GPU训练模型的常用有效方法

Admin 2022-12-24 群英技术资讯 316 次浏览

这篇文章主要介绍“TensorFlow中指定GPU训练模型的常用有效方法”的相关知识,下面会通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“TensorFlow中指定GPU训练模型的常用有效方法”文章能帮助大家解决问题。


 



目录
  • 如何指定GPU训练模型
  • 举个例子
  • 如果要指定多块 GPU

如何指定GPU训练模型

Linux 查看当前服务器 GPU 的占用情况可以使用 nvidia-smi 命令,如下所示:

nvidia-smi

关于 nvidia-smi 命令输出的详细解释,可参考笔者的另外一篇文章:GPU状态监测 nvidia-smi 命令详解。

在此不再赘述,本文主要分享一下在用 TensorFlow 训练模型时如何指定 GPU。

在用 TensorFlow 训练深度学习模型的时候,若无手动指定,默认是选用第0块来训练,而且其他几块 GPU 也会被显示占用。

有时候,我们更希望可以自己指定一块或者多块 GPU 来训练模型,接下来介绍一种常用的也是比较有效的方法:

举个例子

如果要指定只用第0块 GPU 训练,可以在 python 代码中如下指定:

import os
os.environ['CUDA_VISIBLE_DEVICES']='0'

运行 python 程序后,可发现就只有第0块 GPU 显示被占用,如上图所示。

如果要指定多块 GPU

可以如下:

os.environ['CUDA_VISIBLE_DEVICES']='1,2'

当然,上述这种方法不太方便,每次运行若换用 GPU 训练都需要改代码,可以在运行 python 程序的时候进行指定:

CUDA_VISIBLE_DEVICES=0 python textCnn.py   

“TensorFlow中指定GPU训练模型的常用有效方法”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业技术相关的知识可以关注群英网络网站,小编每天都会为大家更新不同的知识。 群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服