怎样搭建的Pytorch配置环境,如何安装Tensorflow不报错
Admin 2022-12-20 群英技术资讯 411 次浏览
Github 上很多大牛的代码都是Tensorflow v1 写的,比较新的文章则喜欢用Pytorch,这导致我们复现实验或者对比实验的时候需要花费大量的时间在搭建不同的环境上。这篇文章是我经过反复实践总结出来的环境配置教程,亲测有效!
首先最基本的Python 环境配置如下:
conda create -n py37 python=3.7
python版本不要设置得太高也不要太低,3.6~3.7最佳,适用绝大部分代码库。(Tensorflow v1 最高支持的python 版本也只有3.7)
然后是Pytorch 环境 (因为最简单省力,哈哈哈)
# ROCM 5.1.1 (Linux only)
pip install torch==1.12.1+rocm5.1.1 torchvision==0.13.1+rocm5.1.1 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/rocm5.1.1
# CUDA 11.6
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116
# CUDA 11.3
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
# CUDA 10.2
pip install torch==1.12.1+cu102 torchvision==0.13.1+cu102 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu102
# CPU only
pip install torch==1.12.1+cpu torchvision==0.13.1+cpu torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cpu
推荐使用pip 安装,用conda 安装的有时候会出现torch 识别不到GPU 的问题....
官网教程链接
Previous PyTorch Versions | PyTorch
然后是显卡相关的配置, cudatoolkit 和 cudnn. 前面这个是pytorch 环境必须具备的包,后面这个则是tensorflow 要使用GPU所必需的。前面安装完pytorch 其实已经装好了一个cudatoolkit,我的电脑是Cuda 10.2 ,所以现在环境中已经有了一个cudatookit=10.2的包了,但是Tensorflow v1 最高只支持到 Cuda 10,所以得降低cudatoolkit的版本到10.0 (Cuda 环境是向下兼容的,我的Cuda 环境是10.2 但是cudatoolkit=10.0 也一样能用,这是Tensorflow v1 最高支持的版本,只能妥协......)
conda install cudatoolkit=10.0
然后装cudnn
conda install cudnn=7.6.5=cuda10.0_0
亦可使用如下命令搜索你所要的cudnn版本
conda search cudnn
如果conda 下载太慢请切换国内源
https://www.jb51.net/article/199913.htm
最后把Tensorflow v1装上
pip install tensorflow-gpu==1.15.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
推荐的Tensorflow v1 的版本是1.15.0 和1.14.0,其他版本尚未测试。
最后分别测试Pytorch 和Tensorflow 能否使用GPU如下:
import torch print(torch.cuda.is_available()
Pytorch 检测GPU的方法相信大家都知道,不再赘述。Tensorflow v1 检测GPU的方法如下:
from tensorflow.python.client import device_lib print(device_lib.list_local_devices())
如果输出结果为:
TypeError: Descriptors cannot not be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:
1. Downgrade the protobuf package to 3.20.x or lower.
2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).
则降低protobuf 的版本
pip install protobuf==3.19.6 -i https://pypi.tuna.tsinghua.edu.cn/simple
正确的输出为:
2022-10-30 21:46:59.982971: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2022-10-30 21:47:00.006072: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3699850000 Hz
2022-10-30 21:47:00.006792: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55d1633f2750 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2022-10-30 21:47:00.006808: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
2022-10-30 21:47:00.008473: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2022-10-30 21:47:00.105474: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-10-30 21:47:00.105762: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x55d1635c3f60 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
2022-10-30 21:47:00.105784: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): NVIDIA GeForce GTX 1080 Ti, Compute Capability 6.1
2022-10-30 21:47:00.105990: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-10-30 21:47:00.106166: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: NVIDIA GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582
pciBusID: 0000:01:00.0
2022-10-30 21:47:00.106369: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0
2022-10-30 21:47:00.107666: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0
2022-10-30 21:47:00.108687: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10.0
2022-10-30 21:47:00.108929: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10.0
2022-10-30 21:47:00.111721: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10.0
2022-10-30 21:47:00.112861: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10.0
2022-10-30 21:47:00.116688: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2022-10-30 21:47:00.116826: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-10-30 21:47:00.117018: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-10-30 21:47:00.117127: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2022-10-30 21:47:00.117170: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.0
2022-10-30 21:47:00.117421: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2022-10-30 21:47:00.117435: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2022-10-30 21:47:00.117446: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2022-10-30 21:47:00.117529: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-10-30 21:47:00.117678: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:983] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2022-10-30 21:47:00.117813: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/device:GPU:0 with 10361 MB memory) -> physical GPU (device: 0, name: NVIDIA GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 10409023728072267246
, name: "/device:XLA_CPU:0"
device_type: "XLA_CPU"
memory_limit: 17179869184
locality {
}
incarnation: 7385902535139826165
physical_device_desc: "device: XLA_CPU device"
, name: "/device:XLA_GPU:0"
device_type: "XLA_GPU"
memory_limit: 17179869184
locality {
}
incarnation: 7109357658802926795
physical_device_desc: "device: XLA_GPU device"
, name: "/device:GPU:0"
device_type: "GPU"
memory_limit: 10864479437
locality {
bus_id: 1
links {
}
}
incarnation: 6537278509263123219
physical_device_desc: "device: 0, name: NVIDIA GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1"
]
最关键的地方是你得看到你的GPU 型号,我的是 GTX 1080Ti,检测成功!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
时间处理是我们日常开发中最最常见的需求,例如:获取当前datetime、获取当天date、获取明天 前N天、获取当天开始和结束时间(00:00:00 23:
在本文中,云朵君将和大家一起了解装饰器的工作原理,如何将我们之前定义的定时器类 Timer 扩展为装饰器,以及如何简化计时功能,感兴趣的可以了解一下
这篇文章主要介绍了python使用pandas读xlsx文件的实现方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
大家都知道concat()函数可以沿着一条轴将多个对象进行堆叠,其使用方式类似数据库中的数据表合并,在使用merge()函数进行合并时,默认会使用重叠的列索引做为合并键,即取行索引重叠的部分,本文给大家介绍python 数据合并concat函数与merge函数,感兴趣的朋友一起看看吧
这篇文章主要介绍了python中列表添加的四种方法小结,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008