pd.concat的用法是什么,有哪些参数
Admin 2022-11-22 群英技术资讯 687 次浏览
语法格式:
pandas.concat(objs, axis=0, join=‘outer’, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=True)
参数 解释 objs 表示需要连接的对象,多个df的话,用列表的方式传入该参数 axis {0/‘index’, 1/‘columns’}要连接的轴。0 为上下堆叠,1为左右拼接 join {‘inner’, ‘outer’}, 默认‘outer’。join='outer’表示外连接,保留两个表中的所有信息;join="inner"表示内连接,拼接结果只保留两个表共有的信息 ignore_index bool,默认为 False。如果为 True,则不要沿连接轴使用索引值。结果轴将标记为 0, …, n - 1。如果您要连接对象,而连接轴没有有意义的索引信息,这将非常有用。请注意,连接中仍然尊重其他轴上的索引值。 keys 键序列,默认无。如果通过了多个级别,则应包含 元组 。使用传递的键作为最外层构建层次索引。 levels 序列列表,默认无。用于构造 MultiIndex 的特定级别(唯一值)。否则,它们将从密钥中推断出来。 names 默认无。生成的分层索引中的级别名称。 verify_integrity bool 值,默认为 False。检查新的连接轴是否包含重复项。相对于实际的数据连接,这可能非常昂贵。 sort bool 值,默认为 False。如果连接为“外部”时尚未对齐,则对非连接轴进行排序。这在 join=‘inner’ 时无效,它已经保留了非串联轴的顺序。在 1.0.0 版更改: 默认情况下更改为不排序。 copy bool 值,默认 True。如果为 False,则不要不必要地复制数据。说明:虽然参数参数有这么多,但其实很多都不常用,常用的参数只有:axis,join ;只要记着两个就OK啦~
更多时候,pd.concat 就是为了将表上下拼接起来,所以这里的内容是非常重要的;
import pandas as pd df1=pd.DataFrame({'姓名':['周杰伦','蔡徐坤','王菲'],'歌曲':['明明就','情人','如愿'],'发行时间':[2019,2018,2021]},index=[1,2,3]) df2=pd.DataFrame({'姓名':['林俊杰','凤凰传奇'],'歌曲':['修炼爱情','海底'],'发行时间':[2016,2022]},index=[1,2]) df3 = pd.concat([df1,df2])若两个表所包含的列名有不同,举例如下:
import pandas as pd df1=pd.DataFrame({'姓名':['周杰伦','蔡徐坤','王菲'],'歌曲':['明明就','情人','如愿'],'发行时间':[2019,2018,2021]},index=[1,2,3]) df2=pd.DataFrame({'姓名':['林俊杰','凤凰传奇'],'歌曲':['修炼爱情','海底'],'金曲奖':['是','否']},index=[1,2]) df3 = pd.concat([df1,df2])若两个表所包含的列不同,举例如下:
import pandas as pd df1=pd.DataFrame({'姓名':['周杰伦','蔡徐坤','王菲'],'歌曲':['明明就','情人','如愿'],'发行时间':[2019,2018,2021]},index=[1,2,3]) df2=pd.DataFrame({'姓名':['林俊杰','凤凰传奇'],'歌曲':['修炼爱情','海底'],'金曲奖':['是','否']},index=[1,2]) df3 = pd.concat([df1,df2],axis=1)可以看到,左右拼接合并时,是以Index作为拼接的关联值的;所以这个方法不是非常常用;因为不太好用;所以,可以忘记这里;
join = 'outer' 就是默认值,所以上面所举的例子都是join = 'outer'的结果,两个参数的对比为:
参数 说明 join = 'outer' 保留所有的数据 join = 'inner' 只保留共有信息举例如下:
pd.concat() 函数虽然参数参数有很多,但其实很多都不常用,常用的参数只有:axis,join ;所以只要知道这两个,一般情况下,就完全够用了;另外,pd.concat() 函数在通常情况下都只用于上下堆叠合并,所以其实我们只要知道上下堆叠合并,这一种使用方法就完全OK啦~
这里多余写这段话,主要就是想大家把精力放在重点上,避免在不重要的地方投入过多精力;
到此,关于“pd.concat的用法是什么,有哪些参数”的学习就结束了,希望能够解决大家的疑惑,另外大家动手实践也很重要,对大家加深理解和学习很有帮助。如果想要学习更多的相关知识,欢迎关注群英网络,小编每天都会给大家分享实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了python爬虫开发之urllib模块详细使用方法与实例全解,需要的朋友可以参考下
这篇文章主要给大家介绍的是关于Python内置函数zip的使用。对于zip()函数,是用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个原则,再返回由这些元组组成的列表。那么具体Python内置函数zip如何使用呢?下面一起来看看。
这篇文章主要介绍了Python中的Numpy 面向数组编程常见操作,使用Numpy数组可以使你利用简单的数组表达式完成多项数据操作任务,而不需要编写大量的循环,这个极大的帮助了我们高效的解决问题
经常由于各种压缩格式的不一样用到文件的解压缩时就需要下载不同的解压缩工具去处理不同的文件。本文将用Python制作一个解压缩小工具,以后再也不用下载各种格式的解压缩软件了
python如何实现单因素分析线性拟合及地理编码?下文有实例供大家参考,对大家了解操作过程或相关知识有一定的帮助,而且实用性强,希望这篇文章能帮助大家,下面我们一起来了解看看吧。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008