Python程序设计思想的核心是什么,有哪些基础知识
Admin 2022-11-22 群英技术资讯 483 次浏览
Python是一种面向对象oop(Object Oriented Programming)的脚本语言。
面向对象是采用基于对象(实体)的概念建立模型,模拟客观世界分析、设计、实现软件的办法。
在面向对象程序设计中,对象包含两个含义,其中一个是数据,另外一个是动作。面向对象的方法把数据和方法组合成一个整体,然后对其进行系统建模。
python编程思想的核心就是理解功能逻辑,如果对解决一个问题的逻辑没有搞清楚,那么你的代码看起来就会非常的紊乱,读起来非常的拗口,所以一旦逻辑清晰,按照模块对功能进行系统编程,那么你的代码设计肯定是漂亮的!!!
任何的程序设计都包含IPO,它们分别代表如下:
I:Input 输入,程序的输入
P:Process 处理,程序的主要逻辑过程
O:Output 输出,程序的输出
因此如果想要通过计算机实现某个功能,那么基本的程序设计模式包含三个部分,如下:
确定IPO:明确需要实现功能的输入和输出,以及主要的实现逻辑过程;
编写程序:将计算求解的逻辑过程通过编程语言进行设计展示;
调试程序:对编写的程序按照逻辑过程进行调试,确保程序按照正确逻辑正确运行。
2.1 自顶向下-分而治之
如果要实现功能的逻辑比较复杂的时候,就需要对其进行模块化设计,将复杂问题进行分解,转化为多个简单问题,其中简单问题又可以继续分解为更加简单的问题,直到功能逻辑可以通过模块程序设计实现,这也是程序设计的自顶向下特点。总结如下:
2.2 举例1:体育竞技分析
printlnfo() 步骤1:打印程序的介绍性信息
getlnputs() 步骤2:获得程序运行参数:proA, proB, n
simNGames() 步骤3:利用球员A和B的能力值,模拟n局比赛
printSummary() 步骤4:输出球员A和B获胜比赛的场次及概率
# 导入python资源包
from random import random
# 用户体验模块
def printIntro():
print("这个程序模拟两个选手A和B的某种竞技比赛")
print("程序运行需要A和B的能力值(以0到1之间的小数表示)")
# 获得A和B的能力值与场次模块
def getIntputs():
a = eval(input("请输入A的能力值(0-1):"))
b = eval(input("请输入B的能力值(0-1):"))
n = eval(input("模拟比赛的场次:"))
return a, b, n
# 模拟n局比赛模块
def simNGames(n, probA, probB):
winsA, winsB = 0, 0
for i in range(n):
scoreA, scoreB = simOneGame(probA, probB)
if scoreA > scoreB:
winsA += 1
else:
winsB += 1
return winsA, winsB
# 判断比赛结束条件
def gameOver(a, b):
return a == 15 or b == 15
# 模拟n次单局比赛=模拟n局比赛
def simOneGame(probA, probB):
scoreA, scoreB = 0, 0
serving = "A"
while not gameOver(scoreA, scoreB):
if serving == "A":
if random() < probA:
scoreA += 1
else:
serving = "B"
else:
if random() < probB:
scoreB += 1
else:
serving = "A"
return scoreA, scoreB
# 打印结果模块
def printSummary(winsA, winsB):
n = winsA + winsB
print("竞技分析开始,共模拟{}场比赛".format(n))
print("选手A获胜{}场比赛,占比{:0.1%}".format(winsA, winsA / n))
print("选手B获胜{}场比赛,占比{:0.1%}".format(winsB, winsB / n))
def main():
printIntro()
probA, probB, n = getIntputs() # 获得用户A、B能力值与比赛场次N
winsA, winsB = simNGames(n, probA, probB) # 获得A与B的场次
printSummary(winsA, winsB) # 返回A与B的结果
main()
登录后复制
2.3 举例2:的斐波那契数列
自顶向下的方式其实就是使用递归来求解子问题,最终解只需要调用递归式,子问题逐步往下层递归的求解。
程序设计:
cache = {}
def fib(number):
if number in cache:
return cache[number]
if number == 0 or number == 1:
return 1
else:
cache[number] = fib(number - 1) + fib(number - 2)
return cache[number]
if __name__ == '__main__':
print(fib(35))
登录后复制
运行结果:
14930352
>>>
登录后复制
理解自顶向下的设计思维:分而治之
3.1 自底向上-模块化集成
自底向上(执行)就是一种逐步组建复杂系统的有效测试方法。首先将需要解决的问题分为各个三元进行测试,接着按照自顶向下相反的路径进行操作,然后对各个单元进行逐步组装,直至系统各部分以组装的思路都经过测试和验证。
理解自底向上的执行思维:模块化集成
自底向上分析思想:
自底向上是⼀种求解动态规划问题的方法,它不使用递归式,而是直接使用循环来计算所有可能的结果,往上层逐渐累加子问题的解。在求解子问题的最优解的同时,也相当于是在求解整个问题的最优解。其中最难的部分是找到求解最终问题的递归关系式,或者说状态转移方程。
3.2 举例:0-1背包问题
你现在想买⼀大堆算法书,有一个容量为 V 的背包,这个商店⼀共有 n 个商品。问题在于,你最多只能拿 W kg 的东西,其中 wi 和 vi 分别表示第 i 个商品的重量和价值。最终的目标就是在能拿的下的情况下,获得最大价值,求解哪些物品可以放进背包。
对于每⼀个商品你有两个选择:拿或者不拿。
⾸先要做的就是要找到“子问题”是什么。通过分析发现:每次背包新装进⼀个物品就可以把剩余的承重能力作为⼀个新的背包来求解,⼀直递推到承重为0的背包问题。
用 m[i,w] 表示偷到商品的总价值,其中 i 表示⼀共多少个商品,w 表示总重量,所以求解 m[i,w]就是子问题,那么看到某⼀个商品i的时候,如何决定是不是要装进背包,需要考虑以下:
由以上的分析,可以得出m[i,w]的状态转移方程为:
m[i,w] = max{m[i-1,w], m[i-1,w-wi]+vi}
# 循环的⽅式,自底向上求解
cache = {}
items = range(1,9)
weights = [10,1,5,9,10,7,3,12,5]
values = [10,20,30,15,40,6,9,12,18]
# 最⼤承重能⼒
W = 4
def knapsack():
for w in range(W+1):
cache[get_key(0,w)] = 0
for i in items:
cache[get_key(i,0)] = 0
for w in range(W+1):
if w >= weights[i]:
if cache[get_key(i-1,w-weights[i])] + values[i] > cache[get_key(i-1,w)]:
cache[get_key(i,w)] = values[i] + cache[get_key(i-1,w-weights[i])]
else:
cache[get_key(i,w)] = cache[get_key(i-1,w)]
else:
cache[get_key(i,w)] = cache[get_key(i-1,w)]
return cache[get_key(8,W)]
def get_key(i,w):
return str(i)+','+str(w)
if __name__ == '__main__':
# 背包把所有东西都能装进去做假设开始
print(knapsack())
登录后复制
29
>>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
在某些编程语言中,例如C/C++、C#、PHP、Java、JavaScript等等,do-while是一种基本的循环结构。它的核心语义是:先执行一遍循环体代码,然后执行一遍条件语句,若条件语句判
这篇文章主要介绍了Python基础学习列表+元组+字典+集合,文章接上一篇内容学习,主要针对python零基础的同学,感兴趣的话就学起来吧
Python怎样求2个向量之间的余弦值?这篇文章就要给大家介绍2个向量之间余弦值的求法,对于大家学习和了解Python有一定的参考价值,感兴趣的朋友就继续往下看吧。
输入一个整数数组,实现一个函数来调整该数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半部分
这篇文章主要介绍了Python基础之tkinter图形化界面学习,文中有非常详细的代码示例,对正在学习python基础的小伙伴们有非常好的帮助,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008