Python实现PyEMD两种方法及不同是什么
Admin 2022-11-04 群英技术资讯 568 次浏览
这篇文章我们来了解“Python实现PyEMD两种方法及不同是什么”的内容,小编通过实际的案例向大家展示了操作过程,简单易懂,有需要的朋友可以参考了解看看,那么接下来就跟随小编的思路来往下学习吧,希望对大家学习或工作能有帮助。
顾名思义,这个包中的方法获取数据(信号)并将其分解为一组组件。所有这些方法理论上都应该将信号分解为同一组分量,但实际上有很多细微差别和不同的方法来处理噪声。无论采用何种方法,获得的分量通常称为本征模态函数(IMF),以强调它们包含固有(自身)属性,即特定振荡(模态)。(以上来自官方文档)
最近尝试实现CEEMDAN,CEEMADN也是EMD的一种变体。按照官方API,有以下两种形式的写法:
大部分博客采用的是第一种写法:
ceemdan = CEEMDAN() ceemdan.ceemdan(load) imfs, res = ceemdan.get_imfs_and_residue() vis = Visualisation() vis.plot_imfs(imfs, res)
这种写法得到的图为:
第二种写法,也是官方的写法:
ceemdan = CEEMDAN()(load) imfs, res = ceemdan[:-1], ceemdan[-1] vis = Visualisation() vis.plot_imfs(imfs, res)
得到的图示为:
可以发现,两张图最大的区别在于Res。一般论文中给出的图示是第二种。
我们尝试输出第一种方法中的Res:
[ 0.00000000e+00 -2.84217094e-14 0.00000000e+00 ... -2.84217094e-14
0.00000000e+00 0.00000000e+00]
可以发现其量级特别小,还原时我们可以不加上这一部分。而方法二中的Res显然量级是最大的,还原时必须加上。
因此,方法一中的Res是我们一般人所理解的残余量,在真正进行建模时可以不考虑。
方法一中画图时如果我们不包含残余量,即:
vis.plot_imfs(imfs=imfs, residue=res, include_residue=False)
我们将得到:
在github上经过交流后,得到如下结论:
方法一中的Res是真正意义上的残余量,或许叫残差更合适一点,也就是分解之后不能再分解的部分。在PyEMD的源码中被定义为:
S * scale_s - np.sum(self.C_IMF, axis=0)
因此,ceemdan.get_imfs_and_residue()实际上得到的是最终的IMF和重建误差,而不是残差。
残差的正确获取方式是ceemdan[-1]。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
用python如何实现求解微分线性方程?python的功能还是比较强大的,这篇文章我们就来看看用Python编写稀疏线性方程组的求解方法,下文有实例代码供大家参考,感兴趣的朋友就继续往下看吧。
今天学习了一下外键查询的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
python中lambda函数怎样使用?python函数有很多,lambda函数也是其中比较基础的一个函数,这篇文章主要分享的是lambda函数用法,下文实例对新手学习lambda函数有一定参考价值,感兴趣的朋友可以了解看看。
本文主要介绍了python中ndarray数组的索引和切片的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
这篇文章主要介绍了通过Opencv+SVM实现人脸识别功能,文中的示例代码介绍详细,对于我们学习人脸识别和OpenCV都有一定的帮助,感兴趣的小伙伴可以学习一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008