Matplotlib中subplot和subplots绘制子图区别在哪?

Admin 2021-08-28 群英技术资讯 854 次浏览

    Matplotlib中subplot和subplots绘制子图区别在哪?我们知道subplot和subplots都可以绘制子图,但是一些朋友可能对两者的区别不是很了解,下面我们就通过一个实例来对比看看subplot和subplots绘制子图的不同。

    对比开始:

    需求:画出两张子图,在一行显示,子图中的内容一模一样

    subplot代码:

ax1 = plt.subplot(1,2,1)
ax1.scatter(positive['X1'], positive['X2'], s=50, marker='x', label='Positive')
ax1.scatter(negative['X1'], negative['X2'], s=50, marker='o', label='Negative')
ax1.legend()#添加图列就是右上角的点说明
ax2 = plt.subplot(1,2,2)
ax2.scatter(positive['X1'], positive['X2'], s=50, marker='x', label='Positive')
ax2.scatter(negative['X1'], negative['X2'], s=50, marker='o', label='Negative')
ax2.legend()#添加图列就是右上角的点说明

 

    subplots代码

fig, ax = plt.subplots(figsize=(12,8),ncols=2,nrows=1)#该方法会返回画图对象和坐标对象ax,figsize是设置子图长宽(1200,800)
ax[0].scatter(positive['X1'], positive['X2'], s=50, marker='x', label='Positive')
ax[0].scatter(negative['X1'], negative['X2'], s=50, marker='o', label='Negative')
ax[0].legend()#添加图列就是右上角的点说明
ax[1].scatter(positive['X1'], positive['X2'], s=50, marker='x', label='Positive')
ax[1].scatter(negative['X1'], negative['X2'], s=50, marker='o', label='Negative')
ax[1].legend()#添加图列就是右上角的点说明

    对比结果:

    可以看出来两者都可以实现画子图功能,只不过subplots帮我们把画板规划好了,返回一个坐标数组对象,而subplot每次只能返回一个坐标对象,subplots可以直接指定画板的大小。

    现在大家对Matplotlib中subplot和subplots绘制子图区别应该都有一定的了解了,上述示例有一定的借鉴价值,有需要的朋友可以参考,希望对大家学习Matplotlib有帮助,想要了解更多Matplotlib的相关知识,大家可以继续关注其他文章。

文本转载自脚本之家

群英智防CDN,智能加速解决方案
标签: subplot和subplots

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服