python多进程怎样创建,与多线程相比性能如何

Admin 2022-11-01 群英技术资讯 289 次浏览

这篇文章给大家分享的是“python多进程怎样创建,与多线程相比性能如何”,对大家学习和理解有一定的参考价值和帮助,有这方面学习需要的朋友,接下来就跟随小编一起学习一下吧。

现在我们的计算机都是多个核的,通俗来说就是多个处理或者计算单元。为了加快运算和处理速度,我们可以将不同的任务交给多个核心进行同时处理,从而提高了运算速度和效率,多个核心同时运作就是多个进程同时进行,这就是多进程。

1.创建进程

创建进程和创建线程的方法基本一致,请看下面代码:

# coding:utf-8
# 导入多进程的包,并重命名为mp
import multiprocessing as mp
# 主要工作
def p1():
    print("zxy")
if __name__ == "__main__":
    # 创建新进程
    new_process = mp.Process(target=p1, name="p1")
    # 启动这个进程
    new_process.start()
    # 阻塞该进程
    new_process.join()

控制台效果图:

2.多进程中的Queue

为什么要在多进程中使用queue呢?
因为多进程和多线程一样,在工作函数中,无法通过return返回进程函数中的结果,所以使用queue进行存储结果,要用的时候再进行取出。

# coding:utf-8
import time
import multiprocessing as mp
"""
    使用多进程时,运行程序所用的时间
"""
def job1(q):
    res = 0
    for i in range(100):
        res += i + i**5 +i**8
        time.sleep(0.1)
    # 将结果放入队列中
    q.put(res)
def job2(q):
    res = 0
    for i in range(100):
        res += i + i**5 +i**8
        time.sleep(0.1)
    q.put(res)
if __name__ == "__main__":
    start_time = time.time()
    # 创建队列
    q = mp.Queue()
    # 创建进程1
    process1 = mp.Process(target=job1, args=(q,))
    # 创建进程2
    process2 = mp.Process(target=job2, args=(q,))
    process1.start()
    process2.start()
    # 通过队列获取值
    res1 = q.get()
    res2 = q.get()
    print("res1为%d,res2为%d" % (res1, res2))
    end_time = time.time()
    print("整个过程所用时间为%s" %(end_time-start_time))

效果图:

3.多进程与多线程的性能比较

接下来使用多进程、多线程、以及什么都不用的普通方法进行处理,看看他们三种方法的效率如何?

# coding:utf-8
import multiprocessing as mp
import time
import threading as th
"""
    多进程、多线程、普通方法的性能比较
"""
# 多进程工作
def mp_job(res):
    for i in range(10000000):
        res += i**5 + i**6
    print(res)
# 多线程工作
def mt_job(res):
    for i in range(10000000):
        res += i**5 + i**6
    print(res)
# 普通方法工作
def normal_job(res):
    for i in range(10000000):
        res += i ** 5 + i ** 6
    print(res)
if __name__ == "__main__":
    mp_sum = 0
    mp_start = time.time()
    process1 =mp.Process(target=mp_job, args=(mp_sum, ))
    process2 = mp.Process(target=mp_job, args=(mp_sum,))
    process1.start()
    process2.start()
    process1.join()
    process2.join()
    mp_end = time.time()
    print("多进程使用时间为", (mp_end-mp_start))
    mt_start = time.time()
    mt_sum = 0
    thread1 = th.Thread(target=mt_job, args=(mt_sum, ))
    thread2 = th.Thread(target=mt_job, args=(mt_sum, ))
    thread1.start()
    thread2.start()
    thread1.join()
    thread2.join()
    mt_end = time.time()
    print("多线程使用的时间是", (mt_end-mt_start))
    normal_start = time.time()
    normal_sum = 0
    # 进行两次
    normal_job(normal_sum)
    normal_job(normal_sum)
    normal_end = time.time()
    print("普通方法使用的时间是", (normal_end-normal_start))

效果图:

实验结果表明:多进程的效率确实高!!!

4.进程池pool

进程池是干什么用的呢?
进程池就是python的多进程提供的一个池子,将所有的进程都放在这个池子里面,让计算机自己去使用进程池中的资源,从而多进程处理一些程序,进而提高工作效率。

(1)默认使用进程池中全部进程时

# coding:utf-8
import time
import multiprocessing as mp
"""
    进程池pool的使用
"""
def job(num):
    time.sleep(1)
    return num * num
if __name__ == "__main__":
    start_time = time.time()
    # 括号里面不加参数时,默认使用进程池中所有进程
    pool = mp.Pool()
    res = pool.map(job, range(10))
    print(res)
    end_time = time.time()
    print("运行时间为", (end_time-start_time))

效果图:

(2)指定进程池中进程数时

# coding:utf-8
import time
import multiprocessing as mp
"""
    进程池pool的使用
"""
def job(num):
    time.sleep(1)
    return num * num
if __name__ == "__main__":
    start_time = time.time()
    # 括号里面加参数时,指定两个进程进行处理
    pool = mp.Pool(processes=2)
    res = pool.map(job, range(10))
    print(res)
    end_time = time.time()
    print("运行时间为", (end_time-start_time))

效果图:

(3)不使用多进程时

# coding:utf-8
import time
def job(res):
    for i in range(10):
        res.append(i*i)
        time.sleep(1)
if __name__ == "__main__":
    start_time = time.time()
    res = []
    job(res)
    print(res)
    end_time =time.time()
    print("不使用进程池所用时间为", (end_time-start_time))

效果图:

实验结论:多进程处理事情,效率很高!!!核心越多,处理越快!

5.共享内存

一个核心,我们多线程处理时,可以使用全局变量来共享数据。但是多进程之间是不行的,那我们多进程之间应该如何共享数据呢?
那就得用到共享内存了!

# coding:utf-8
import multiprocessing as mp
"""
    共享内存
"""
if __name__ == "__main__":
    # 第一个参数是数据类型的代码,i代表整数类型
    # 第二个参数是共享数据的值
    v = mp.Value("i", 0)

6.进程锁lock

进程锁和线程锁的用法基本一致。进程锁的诞生是为了避免多进程之间抢占共享数据,进而造成多进程之间混乱修改共享内存的局面。

(1)不加锁之前

# coding:utf-8
import multiprocessing as mp
import time
"""
    进程中的锁lock
"""
def job(v, num):
    for i in range(10):
        v.value += num
        print(v.value)
        time.sleep(0.2)
if __name__ == "__main__":
    # 多进程中的共享内存
    v = mp.Value("i", 0)
    # 进程1让共享变量每次加1
    process1 = mp.Process(target=job, args=(v, 1))
    # 进程2让共享变量每次加3
    process2 = mp.Process(target=job, args=(v, 3))
    process1.start()
    process2.start()

效果图:

(2)加锁之后

# coding:utf-8
import multiprocessing as mp
import time
"""
    进程中的锁lock
"""
def job(v, num, l):
    # 加锁
    l.acquire()
    for i in range(10):
        v.value += num
        print(v.value)
        time.sleep(0.2)
    # 解锁
    l.release()
if __name__ == "__main__":
    # 创建进程锁
    l = mp.Lock()
    # 多进程中的共享内存
    v = mp.Value("i", 0)
    process1 = mp.Process(target=job, args=(v, 1, l))
    process2 = mp.Process(target=job, args=(v, 3, l))
    process1.start()
    process2.start()

效果图:



这篇关于“python多进程怎样创建,与多线程相比性能如何”的文章就介绍到这了,更多相关的内容,欢迎关注群英网络,小编将为大家输出更多高质量的实用文章! 群英智防CDN,智能加速解决方案
标签: Python多进程

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服