如何理解permute函数的用法,三维矩阵怎样应用
Admin 2022-10-31 群英技术资讯 340 次浏览
本文只讨论二维三维中的permute用法
最近的Attention学习中的一个permute函数让我不理解
这个光说太抽象
我就结合代码与图片解释一下
首先创建一个三维数组小实例
import torch x = torch.linspace(1, 30, steps=30).view(3,2,5) # 设置一个三维数组 print(x) print(x.size()) # 查看数组的维数
这里为了防止出现维数数值相同的巧合局面(例如三维数组(3,3,3)或者(2,4,4)等)
输出结果如下图
一般的把(3,2,5)解释为3维2行5列这里很容易让人迷迷糊糊
那么我们按照块,行,列理解起来会更容易一些
比如(3,2,5),表示3块 2*5的数组
以下我简单用3块3*3图偷懒举例
然后堆起来就是我们熟知的三维矩阵
接下来先简单介绍下permute()函数
permute(dims)
参数dims用矩阵的维数代入,一般默认从0开始。即第0维,第1维等等
也可以理解为,第0块,第1块等等。当然矩阵最少是两维才能使用permute
如是两维,dims分别为是0和1
可以写成permute(0,1)这里不做任何变化,维数与之前相同
如果写成permute(1,0)得到的就是矩阵的转置
如果三维是permute(0,1,2)
0代表共有几块维度:本例中0对应着3块矩阵
1代表每一块中有多少行:本例中1对应着每块有2行
2代表每一块中有多少列:本例中2对应着每块有5列
所以是3块2行5列的三维矩阵
这些0,1,2并没有任何实际的意义,也不是数值,只是用来标识区别。有点类似于x,y,z来区分三个坐标维度,是人为规定好的
三维情况直接用下面的代码来给大家讲解
b = x.permute(0,1,2) # 不改变维度 print(b) print(b.size())
发现此时矩阵没有变化,依然是按照之前的方式排列
b = x.permute(0,2,1) # 每一块的行与列进行交换,即每一块做转置行为 print(b) print(b.size())
两张图片可以比较
在不改变每一块(即)的前提下,对每一块的行列进行对调(即二维矩阵的转置)
b = x.permute(1,0,2) # 交换块和行 print(b) print(b.size())
两者比较可以看出块数和每块的行数发生了变化
即参数0对应的数值3块变成2块
参数1对应的2行变成3行
这个变化刚好是0与1 的位置交换,导致参数进行对调
此时变成了2块 * 3行 * 5列(初始为3块 * 2行 *5列)
b = x.permute(2,1,0) # 交换块和列 print(b) print(b.size())
此时参数0对应的3块经过permute已经变成了5块
参数2对应的5列已经变成了3列
b = x.permute(2,0,1) # 交换块和行和列 print(b) print(b.size())
此时参数0对应的3块变成了5块
参数1对应的2行变成了3行
参数2对应的5列变成了2列
b = x.permute(1,2,0) # 交换块和行和列 print(b) print(b.size())
此时参数0对应的3块变成了2块
参数1对应的2行变成了5行
参数2对应的5列变成了3列
根据以上举得二维和三维例子可以知道permute()函数其实是对矩阵的块行列进行交换,里面的参数并不是具体数值,而是块行列的代指
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
在Python中不仅可以绘制折线图、柱状图、散点图等常规图外,还支持绘制量场图、频谱图、提琴图、箱型图等特殊图。本文将主要介绍如何绘制流线图,需要的朋友可以参考一下
文本主要给大家介绍python实现反转字符串的方法,也就是将给定的字符串,逆序输出。很多新手可能会觉得比较困难,其实在Python中有很多方法都可以实现,下面我们一起来看看。
json操作是最为基本的、最为常用的,Python自带的json模块就可以满足大部分应用场景,而且使用起来极为简单,下面这篇文章主要给大家介绍了关于Python中json操作的相关资料,需要的朋友可以参考下
python怎样实现九宫格图片?我们常常能在朋友圈看到一张图片分成九宫格的图片,很多朋友都觉得挺有意思的,那么这是怎样做的呢?下面我们就来看看用Python怎样实现九宫格图片功能。
本篇文章给大家带来了关于Python的相关知识,详细介绍了Python实现提取四种不同文本特征的方法,有字典文本特征提取、英文文本特征提取、中文文本特征提取和TF-IDF 文本特征提取,感兴趣的可以了解一下。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008