如何掌握NumPy的数据类型对象的知识

Admin 2022-10-26 群英技术资讯 356 次浏览

这篇文章主要介绍“如何掌握NumPy的数据类型对象的知识”的相关知识,下面会通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“如何掌握NumPy的数据类型对象的知识”文章能帮助大家解决问题。



每个 ndarray 都有一个关联的数据类型 (dtype) 对象。这个数据类型对象(dtype)告诉我们数组的布局。这意味着它为我们提供了以下信息:

  • 数据类型(整数、浮点数、Python 对象等)
  • 数据大小(字节数)
  • 数据的字节顺序(小端或大端)
  • 如果数据类型是子数组,它的形状和数据类型是什么。

ndarray 的值存储在缓冲区中,可以将其视为连续的内存字节块。所以这些字节将如何被解释由dtype对象给出。

构造数据类型(dtype)对象

数据类型对象是 numpy.dtype 类的一个实例,可以使用numpy.dtype.

参数:

obj: 要转换为数据类型对象的对象。

align : [bool, optional] 向字段添加填充以匹配 C 编译器为类似 C 结构输出的内容。

copy : [bool, optional] 制作数据类型对象的新副本。如果为 False,则结果可能只是对内置数据类型对象的引用。

# Python 程序创建数据类型对象
import numpy as np
 
# np.int16 被转换为数据类型对象。
print(np.dtype(np.int16))
登录后复制

输出:

int16

# Python 程序创建一个包含 32 位大端整数的数据类型对象
import numpy as np
 
# i4 表示大小为 4 字节的整数
# > 表示大端字节序和
# < 表示小端编码。
# dt 是一个 dtype 对象
dt = np.dtype('>i4')
 
print("Byte order is:",dt.byteorder)
 
print("Size is:", dt.itemsize)
 
print("Data type is:", dt.name)
登录后复制

输出:

Byte order is: >
Size is: 4
Name of data type is: int32

类型说明符(在上述情况下为 i4)可以采用不同的形式:

b1、i1、i2、i4、i8、u1、u2、u4、u8、f2、f4、f8、c8、c16、a(表示字节、整数、无符号整数、浮点数、指定字节长度的复数和定长字符串)

int8,...,uint8,...,float16, float32, float64, complex64, complex128(这次是大小)

注意: dtype 与 type 不同。

# 用于区分类型和数据类型的 Python 程序。
import numpy as np
 
a = np.array([1])
 
print("type is: ",type(a))
print("dtype is: ",a.dtype)
登录后复制

输出:

type is:
dtype is: int32

具有结构化数组的数据类型对象

数据类型对象对于创建结构化数组很有用。结构化数组是包含不同类型数据的数组。可以借助字段访问结构化数组。

字段就像为对象指定名称。在结构化数组的情况下,dtype 对象也将是结构化的。

# 用于演示字段使用的 Python 程序
import numpy as np
 
# 一种结构化数据类型,包含一个 16 字符的字符串(在“name”字段中)和两个 64 位浮点数的子数组(在“grades”字段中)
 
dt = np.dtype([('name', np.unicode_, 16),
               ('grades', np.float64, (2,))])
 
# 具有字段等级的对象的数据类型
print(dt['grades'])
 
# 具有字段名称的对象的数据类型
print(dt['name'])
登录后复制

输出:

('<f8', (2,))

# Python 程序演示了数据类型对象与结构化数组的使用。
import numpy as np
 
dt = np.dtype([('name', np.unicode_, 16),
               ('grades', np.float64, (2,))])
 
# x 是一个包含学生姓名和分数的结构化数组。
# 学生姓名的数据类型是np.unicode_,分数的数据类型是np.float(64)
x = np.array([('Sarah', (8.0, 7.0)),
              ('John', (6.0, 7.0))], dtype=dt)
 
print(x[1])
 
print("Grades of John are: ", x[1]['grades'])
print("Names are: ", x['name'])
登录后复制

输出:

('John', [ 6., 7.])
Grades of John are: [ 6. 7.]
Names are: ['Sarah' 'John']


上述内容具有一定的借鉴价值,感兴趣的朋友可以参考,希望能对大家有帮助,想要了解更多"如何掌握NumPy的数据类型对象的知识"的内容,大家可以关注群英网络的其它相关文章。 群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服