KNN分类算法的定义及Python实现代码是什么
Admin 2022-10-26 群英技术资讯 347 次浏览
这篇文章我们来了解“KNN分类算法的定义及Python实现代码是什么”的内容,小编通过实际的案例向大家展示了操作过程,简单易懂,有需要的朋友可以参考了解看看,那么接下来就跟随小编的思路来往下学习吧,希望对大家学习或工作能有帮助。
本篇文章给大家带来了关于Python的相关知识,KNN分类算法(K-Nearest-Neighbors Classification),又叫K近邻算法,是一个概念极其简单,而分类效果又很优秀的分类算法。
KNN分类算法(K-Nearest-Neighbors Classification),又叫K近邻算法,是一个概念极其简单,而分类效果又很优秀的分类算法。
他的核心思想就是,要确定测试样本属于哪一类,就寻找所有训练样本中与该测试样本“距离”最近的前K个样本,然后看这K个样本大部分属于哪一类,那么就认为这个测试样本也属于哪一类。简单的说就是让最相似的K个样本来投票决定。
这里所说的距离,一般最常用的就是多维空间的欧式距离。这里的维度指特征维度,即样本有几个特征就属于几维。
KNN示意图如下所示。(图片来源:百度百科)
上图中要确定测试样本绿色属于蓝色还是红色。
显然,当K=3时,将以1:2的投票结果分类于红色;而K=5时,将以3:2的投票结果分类于蓝色。
KNN算法简单有效,但没有优化的暴力法效率容易达到瓶颈。如样本个数为N,特征维度为D的时候,该算法时间复杂度呈O(DN)增长。
所以通常KNN的实现会把训练数据构建成K-D Tree(K-dimensional tree),构建过程很快,甚至不用计算D维欧氏距离,而搜索速度高达O(D*log(N))。
不过当D维度过高,会产生所谓的”维度灾难“,最终效率会降低到与暴力法一样。
因此通常D>20以后,最好使用更高效率的Ball-Tree,其时间复杂度为O(D*log(N))。
人们经过长期的实践发现KNN算法虽然简单,但能处理大规模的数据分类,尤其适用于样本分类边界不规则的情况。最重要的是该算法是很多高级机器学习算法的基础。
当然,KNN算法也存在一切问题。比如如果训练数据大部分都属于某一类,投票算法就有很大问题了。这时候就需要考虑设计每个投票者票的权重了。
测试数据的格式仍然和前面使用的身高体重数据一致。不过数据稍微增加了一些
1.5 40 thin
1.5 50 fat
1.5 60 fat
1.6 40 thin
1.6 50 thin
1.6 60 fat
1.6 70 fat
1.7 50 thin
1.7 60 thin
1.7 70 fat
1.7 80 fat
1.8 60 thin
1.8 70 thin
1.8 80 fat
1.8 90 fat
1.9 80 thin
1.9 90 fat
登录后复制
scikit-learn提供了优秀的KNN算法支持。
import numpy as np
from sklearn import neighbors
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import classification_report
from sklearn.cross_validation import train_test_split
import matplotlib.pyplot as plt
''' 数据读入 '''
data = []
labels = []
with open("data\\1.txt") as ifile:
for line in ifile:
tokens = line.strip().split(' ')
data.append([float(tk) for tk in tokens[:-1]])
labels.append(tokens[-1])
x = np.array(data)
labels = np.array(labels)
y = np.zeros(labels.shape)
''' 标签转换为0/1 '''
y[labels=='fat']=1
''' 拆分训练数据与测试数据 '''
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
''' 创建网格以方便绘制 '''
h = .01
x_min, x_max = x[:, 0].min() - 0.1, x[:, 0].max() + 0.1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
''' 训练KNN分类器 '''
clf = neighbors.KNeighborsClassifier(algorithm='kd_tree')
clf.fit(x_train, y_train)
'''测试结果的打印'''
answer = clf.predict(x)
print(x)
print(answer)
print(y)
print(np.mean( answer == y))
'''准确率与召回率'''
precision, recall, thresholds = precision_recall_curve(y_train, clf.predict(x_train))
answer = clf.predict_proba(x)[:,1]
print(classification_report(y, answer, target_names = ['thin', 'fat']))
''' 将整个测试空间的分类结果用不同颜色区分开'''
answer = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:,1]
z = answer.reshape(xx.shape)
plt.contourf(xx, yy, z, cmap=plt.cm.Paired, alpha=0.8)
''' 绘制训练样本 '''
plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap=plt.cm.Paired)
plt.xlabel(u'身高')
plt.ylabel(u'体重')
plt.show()
登录后复制
输出结果:
[ 0. 0. 1. 0. 0. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 0. 1.]
[ 0. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 0. 1.]
准确率=0.94, score=0.94
precision recall f1-score support
thin 0.89 1.00 0.94 8
fat 1.00 0.89 0.94 9
avg / total 0.95 0.94 0.94 17
KNN分类器在众多分类算法中属于最简单的之一,需要注意的地方不多。有这几点要说明:
1、KNeighborsClassifier可以设置3种算法:‘brute',‘kd_tree',‘ball_tree'。如果不知道用哪个好,设置‘auto'让KNeighborsClassifier自己根据输入去决定。
2、注意统计准确率时,分类器的score返回的是计算正确的比例,而不是R2。R2一般应用于回归问题。
3、本例先根据样本中身高体重的最大最小值,生成了一个密集网格(步长h=0.01),然后将网格中的每一个点都当成测试样本去测试,最后使用contourf函数,使用不同的颜色标注出了胖、廋两类。
容易看到,本例的分类边界,属于相对复杂,但却又与距离呈现明显规则的锯齿形。
这种边界线性函数是难以处理的。而KNN算法处理此类边界问题具有天生的优势。我们在后续的系列中会看到,这个数据集达到准确率=0.94算是很优秀的结果了。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
内容介绍time模块datetime模块总结time模块time模块,也就是时间模块,用来进行一些与时间有关的操作。其使用方法为:importtimeprint(time.time())
混淆矩阵(Confusion Matrix)是机器学习中用来总结分类模型预测结果的一个分析表,是模式识别领域中的一种常用的表达形式。它以矩阵的形式描绘样本数据的真实属性和分类预测结果类型之间的关系,是用来评价分类器性能的一种常用方法。
为了方便的实现记录数据、修改数据没有精力去做一个完整的系统去管理数据。因此,在python的控制台直接实现一个简易的数据管理系统,包括数据的增删改查等等。感兴趣的可以跟随小编一起学习一下
本篇文章给大家带来了关于Python的相关知识,详细介绍了Python实现提取四种不同文本特征的方法,有字典文本特征提取、英文文本特征提取、中文文本特征提取和TF-IDF 文本特征提取,感兴趣的可以了解一下。
Note: 本解决方案在window10 + anaconda3 +pycharm2020.1.1 + scrapy安装亲测可用
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008