python下划线怎样用?常见用法你知多少?
Admin 2021-08-23 群英技术资讯 499 次浏览
这篇文章给大家分享的是有关python下划线怎么用的内容,python下划线在很多场景中都是比较常见的,小编觉得挺实用的,因此分享给大家做个参考,接下来我们一起来学习一下python下划线的用法吧。
目前常见的用法有五种:
下面我们具体看看这些下划线应用场景。
单下划线一般用于表示临时变量,在REPL、for循环和元组拆包等场景中比较常见。
单下划线在REPL中关联的是上一次计算的非None结果。
>>> 1+1 2 >>> _ 2 >>> a=2+2 >>> _ 2
1+1,结果为2,赋值给_;而赋值表达式a=2+2a为4,但整个表达式结果为None,故不会关联到_。这有点类似日常大家使用的计算器中的ANS按键,直接保存了上次的计算结果。
for循环中_作为临时变量用。下划线来指代没什么意义的变量。例如在如下函数中,当我们只关心函数执行次数,而不关心具体次序的情况下,可以使用_作为参数。
nums = 13 for _ in range(nums): fun_oper()
第三个用法是元组拆包,赋值的时候可以用_来表示略过的内容。如下代码忽略北京市人口数,只取得名字和区号。
>>> city,_,code = ('Beijing',21536000,'010') >>> print(city,code) Beijing 010
如果需要略过的内容多于一个的话,可以使用*开头的参数,表示忽略多个内容。如下代码忽略面积和人口数,只取得名字和区号
city,*_,code = ('Beijing',21536000,16410.54,'010')
在一些国际化编程中,_常用来表示翻译函数名。例如gettext包使用时:
import gettext zh = gettext.tranlation('dict','locale',languages=['zh_CN']) zh.install() _('hello world')
依据设定的字典文件,其返回相应的汉字“你好世界”。
_也可用于数字的分割,这在数字比较长的时候常用。
>>> a = 9_999_999_999 >>> a 9999999999
a的值自动忽略了下划线。这样用_分割数字,有利于便捷读取比较大的数。
变量后面加一个下划线。主要用于解决命名冲突问题,元编程中遇时Python保留的关键字时,需要临时创建一个变量的副本时,都可以使用这种机制。
def type_obj_class(name,class_): pass def tag(name,*content,class_): pass
以上代码中出现的class是Python的保留关键字,直接使用会报错,使用下划线后缀的方式解决了这个问题。
前面一个下划线,后面加上变量,这是仅供内部使用的“保护变量”。比如函数、方法或者属性。
这种保护不是强制规定,而是一种程序员的约定,解释器不做访问控制。一般来讲这些属性都作为实现细节而不需要调用者关心,随时都可能改变,我们编程时虽然能访问,但是不建议访问。
这种属性,只有在导入时,才能发挥保护作用。而且必须是from XXX import *
这种导入形式才能发挥保护作用。
使用
from XXX import *
是一种通配导入(wildcard import),这是Python社区不推荐的方式,因为你根本搞不清你到底导入了什么属性、方法,很可能搞乱你自己的命名空间。PEP8推荐的导入方式是from XXX import aVar , b_func , c_func
这种形式。
比如在下例汽车库函数tools.py里定义的“保护属性”:发动机型号和轮胎型号,这属于实现细节,没必要暴露给用户。当我们使用from tools import *
语句调用时,其实际并没有导入所有_开头的属性,只导入了普通drive方法。
_moto_type = 'L15b2' _wheel_type = 'michelin' def drive(): _start_engine() _drive_wheel() def _start_engine(): print('start engine %s'%_moto_type) def _drive_wheel(): print('drive wheel %s'%_wheel_type)
查看命令空间print(vars())可见,只有drive函数被导入进来,其他下划线开头的“私有属性”都没有导入进来。
{'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__':
<_frozen_importlib_external.SourceFileLoader object at 0x005CF868>, '__spec__':
None, '__annotations__':{}, '__builtins__': <module 'builtins' (built-in)>, '__file__':
'.\\xiahuaxian.py', '__cached__': None, 'walk': <function walk at 0x01DA8C40>, 'root':
'.\\__pycache__', '_': [21536000, 16410.54], 'dirs': ['tools.cpython-38.pyc'], 'city':
'Beijing', 'code': '010', 'drive': <function drive at 0x01DBC4A8>}
之所以说是“保护”并不是“私有”,是因为Python没有提供解释器机制来控制访问权限。我们依然可以访问这些属性:
import tools tools._moto_type = 'EA211' tools.drive()
以上代码,以越过“保护属性”。此外,还有两种方法能突破这个限制,一种是将“私有属性”添加到tool.py文件的__all__列表里,使from tools import *
也导入这些本该隐藏的属性。
__all__ = ['drive','_moto_type','_wheel_type']
另一种是导入时指定“受保护属性”名。
from tools import drive,_start_engine _start_engine()
甚至是,使用import tools
也可以轻易突破保护限制。所以可见,“保护属性”是一种简单的隐藏机制,只有在from tools import *
时,由解释器提供简单的保护,但是可以轻易突破。这种保护更多地依赖程序员的共识:不访问、修改“保护属性”。除此之外,有没有更安全的保护机制呢?有,就是下一部分讨论的私有变量。
私有属性解决的之前的保护属性保护力度不够的问题。变量前面加上两个下划线,类里面作为属性名和方法都可以。两个下划线属性由Python的改写机制来实现对这个属性的保护。
看下面汽车例子中,品牌为普通属性,发动机为“保护属性”,车轮品牌为“私有属性”。
class Car: def __init__(self): self.brand = 'Honda' self._moto_type = 'L15B2' self.__wheel_type = 'michelin' def drive(self): print('Start the engine %s,drive the wheel %s,I get a running %s car'% (self._moto_type, self.__wheel_type, self.brand))
我们用var(car1)查看下具体属性值,
['_Car__wheel_type', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__',
'__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_moto_type', 'brand', 'drive']
可见,实例化car1中,普通属性self.brand和保护属性self._moto_type都得以保存,两个下划线的私有属性__wheel_type没有了。取而代之的是_Car_wheel_type这个属性。这就是改写机制(Name mangling)。两个下划线的属性,被改写成带有类名前缀的变量,这样子类很难明明一个和如此复杂名字重名的属性。保证了属性不被重载,保证了其的私有性。
这里“私有变量”的实现,是从解释器层面给与的改写,保护了私有变量。但是这个机制并非绝对安全,因为我们依然可以通过obj._ClasssName__private来访问__private私有属性。
car1.brand = 'Toyota' car1._moto_type = '6AR-FSE' car1._Car__wheel_type = 'BRIDGESTONE' car1.drive()
结果
Start the engine 6AR-FSE,\
drive the wheel BRIDGESTONE,\
I get a running Toyota car
可见,对改写机制改写的私有变量,虽然保护性加强了,但依然可以访问并修改。只是这种修改,只是一种杂耍般的操作,并不可取。
变量前面两个下划线,后面两个下划线。这是Python当中的魔术方法,一般是给系统程序调用的。例如上例中的__init__就是类的初始化魔术方法,还有支持len函数的__len__方法,支持上下文管理器协议的__enter__和__exit__方法,支持迭代器协议的__iter__方法,支持格式化显示的__repr__和__str__方法等等。这里我们为上例的Car类添加魔术方法__repr__来支持格式化显示。
def __repr__(self): return '***Car %s:with %s Engine,%sWheel***'% (self.brand,self._moto_type,self.__wheel_type)
未添加__repr__魔术方法之前,print(car1)结果为<__main__.Car object at 0x0047F7F0>,这个结果让人看的一头雾水,增加repr魔术方法之后,显示结果为***Car Toyota:with 6AR-FSE Engine,BRIDGESTONE Wheel***清晰明了,利于调试。这就是魔术方法的功效:支持系统调用,改进用户类表现,增加协议支持,使用户类表现得更像系统类。
以下所有魔术方法均需要在前后加上__,这里省略了这些双下划线。
算术运算除and之外,前面再加上r,表示反运算。除dimod外,前面加上i,表示就地运算。
总之,下划线在 Python 当中应用还是很广泛的,甚至可以说 Python 对下划线有所偏爱
可以看到 _常用于临时变量,在REPL,for循环,元组拆包和国际化中得到了广泛应用
var_用于解决命名冲突问题,使用时比较简单易懂的。_var对变量的保护,只是一种脆弱的保护,更多依靠程序员的约定。__var用于私有变量,借助改写机制支持,已经支持了私有变量,但是仍然存在漏洞
对__var__用于魔术方法,进行了一个简单的介绍,魔术方法较多,但是理解并不复杂。希望以后可以进一步介绍这些魔术方法
关于python下划线的用法就介绍到这了,上述几种python下划线的应用场景介绍有一定的参考价值,希望对大家学习python有一定的帮助,想要了解更多python下划线的内容大家可以继续关注其他文章。
文本转载自脚本之家
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
在使用python中,你会遇到一个词,就是堆排序。那堆排序是什么呢?堆排序看字面意思是一种排序方法,那堆是什么呢?堆是一个近似完全二叉树的结构,并同时满足堆积的性质。其实堆排序是指利用堆这种数据结构所设计的一种排序算法。认识了堆排序,那你知道堆排序在python中如何实现吗?
这篇文章主要介绍了python数据结构之搜索讲解,搜索是指从元素集合中找到某个特定元素的算法过程。搜索过程通常返回 True 或 False, 分别表示元素是否存在,下面一起来了解文章的详细内容吧,希望对你有所帮助
AUC(Area under curve)是机器学习常用的二分类评测手段,直接含义是ROC曲线下的面积。本文将利用Python语言实现计算AUC,感兴趣的可以学习一下
这篇文章主要介绍了详解Python 3.10 中的新功能和变化,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
这篇文章主要介绍了Python数据分析之 Matplotlib 散点图绘制,散点图又称散点图,是使用多个坐标点的分布反映数据点分布规律、数据关联关系的图表,下文对散点图的详细介绍及绘制,需要的小伙伴可以参考以一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008