用JavaScript如何判定和求100内的素数

Admin 2022-10-09 群英技术资讯 324 次浏览

这篇文章将为大家详细讲解有关“用JavaScript如何判定和求100内的素数”的知识,下文有详细的介绍,小编觉得挺实用的,对大家学习或工作或许有帮助,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。


本教程操作环境:windows7系统、javascript1.8.5版、Dell G3电脑。

素数的概念

素数又叫质数,素数是指在大于1的自然数中,除了1和它本身以外,不能被其他自然数整除的数。

100以内的素数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个。

JavaScript判定素数的四种方法

1、素数只能被1和自身整除

素数只能被1和自身整除,所以遍历(1,n)开区间中的所有自然数给n来除,若存在整除,即余数为0,则表示该数n不是素数,否则就是素数。

function isPrime(n) {
  n = parseInt(n);
 
  if (n <= 3) {
    return n > 1;
  }
 
  for (let i = 2; i < n; i++) {
    if (n % i === 0) {
      return false;
    }
  }
  return true;
}

但是这种算法的复杂度为O(n)

2、素数平方根范围

假设n不是素数,则n除了可以被1和n整除外,还可以被i、j整除,即 n / i = j...0,比如15不是素数,15 / 3 = 5,比如35不是素数,35 / 5 = 7,此时i,j必然分别处于(1, Math.sqrt(n)]和[Math.sqrt(n), n) 之中,比如Math.sqrt(15) ≈ 3.8,则 3处于(1,3.8],5处于[3.8, 15)。比如Math.sqrt(4) = 2,则2处于(1,2]中,也处于[2,4)中。

function isPrime(n) {
  n = parseInt(n);
 
  if (n <= 3) {
    return n > 1;
  }
 
  for (let i = 2; i <= Math.sqrt(n); i++) {
    if (n % i === 0) {
      return false;
    }
  }
  return true;
}

此时算法复杂度为O(sqrt(n))

3、素数不能非2的其他偶数

除了2,所有偶数都不是素数

function isPrime(n) {
  n = parseInt(n);
 
  if (n <= 3) {
    return n > 1;
  }
 
  if (n % 2 === 0) {
    return false;
  }
 
  for (let i = 3; i <= Math.sqrt(n); i += 2) {
    if (n % i === 0) {
      return false;
    }
  }
  return true;
}

for循环中n,只能为上图浅蓝色部分。

因此上面算法减少了一半的循环,时间复杂度为O(sqrt(n) / 2)

需要注意的是,本算法的代码不能将n % 2 === 0 的判断条件加入到循环中,如下代码存在漏洞

function isPrime(n) {
  n = parseInt(n);
 
  if (n <= 3) {
    return n > 1;
  }
 
  for (let i = 3; i <= Math.sqrt(n); i += 2) {
    if (n % 2 === 0 || n % i === 0) {
      return false;
    }
  }
  return true;
}

此时4、6、8都会被判定为素数。

漏洞形成的原因是,for循环的循环条件 i <= Math.sqrt(n) 不成立,比如n=4时,i <= Math.sqrt(4) 不成立,导致n无法进入循环中n % 2 === 0 的判断,而是直接退出循环,return true。

该算法只能保证循环条件 i <= Math.sqrt(n) 成立的n值判断素数正确,即 n >= i^2 = 9 时。

4、大于等于5的素数一定和6的倍数相邻

大于等于5的素数一定和6的倍数相邻

(注意这句话不等价于:和6的倍数相邻的数一定是大于5的素数,该结论不成立。)

如上图中,将大于等于5的数分为了:6y-1、6y、6y+1、6y+2、6y+3、6y+4(y>=1)

其中,6y、6y+2、6y+3、6y+4都不可能是素数,只有6y-1和6y+1可能是素数。

另外,6y-1(y>=1)和 6y + 5 (y>=0)等价。

所以,我们可以将n不为6y-1(或6y+5)和6y+1的数直接排除,排除方法为,

  if (n % 6 !== 1 && n % 6 !== 5) {
    return false;
  }

下面要剔除掉6y-1(或6y+5)和6y+1中的非素数,

  for (let i = 5; i <= Math.sqrt(n); i += 6) {
    if (n % i === 0 || n % (i + 2) === 0) {
      return false;
    }
  }

这里大家比较疑惑的可能有两点:

  • for循环i自增为啥是 6
  • for循环中素数判定的条件为啥是 n % i === 0 || n % (i+2) === 0

我们看上面图解,可以发现,6y-1,是基数为5,差值为6的等差数列,即 5 + 6x :

  • 对于 5 + 6x 而言,如果x为5的倍数(5 * z),则5 + 6x = 5 + 6 * 5 * z = 5 *(1+6z),则此时5 + 6x可以被5整除
  • 5 + 6x 还可以转化为 5 + 6 + 6 * (x-1) = 11 + 6(x-1),则只要x-1为11的倍数,则5 + 6x可以被11整除
  • 5 + 6x 还可以转化为 5 + 12 + 6 * (x-2) = 17 + 6(x-2),则只要x-2为17的倍数,则5 + 6x可以被17整除
  • ......

6y+1,是基数为7,差值为6的等差数列,即 7 + 6x :

  • 对于 7 + 6x 而言,如果x为7的倍数(7 * z),则7 + 6x = 7 + 6 * 7 * z = 7 *(1+6z),则此时7 + 6x可以被7整除
  • 7 + 6x 还可以转化为 7 + 6 + 6 * (x-1) = 13 + 6(x-1),则只要x-1为13的倍数,则7 + 6x可以被13整除
  • 7 + 6x 还可以转化为 7 + 12 + 6 * (x-2) = 19 + 6(x-2),则只要x-2为19的倍数,则7 + 6x可以被19整除
  • ......

所以6y-1和6y+1可能整除的数自增量为6,这是for循环i自增为啥是 6的原因

且6y-1和6y+1的整除数基数为5和7,相差为2,这是for循环中素数判定的条件为啥是 n % i === 0 || n % (i+2) === 0的原因

function isPrime(n) {
  n = parseInt(n);
 
  if (n <= 3) {
    return n > 1;
  }
 
  if (n % 6 !== 1 && n % 6 !== 5) {
    return false;
  }
 
  for (let i = 5; i <= Math.sqrt(n); i += 6) {
    if (n % i === 0 || n % (i + 2) === 0) {
      return false;
    }
  }
 
  return true;
}

此时时间复杂度为 O(sqrt(n) / 3) 


以上就是关于“用JavaScript如何判定和求100内的素数”的相关知识,感谢各位的阅读,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注群英网络,小编每天都会为大家更新不同的知识。
群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服