pytorch中使用cuda处理数据怎样做?
Admin 2021-08-19 群英技术资讯 898 次浏览
这篇文章主要给大家分享的是关于pytorch中使用cuda处理数据的内容,小编认为比较实用,因此分享给大家作参考,下文有具体的方法和实例,感兴趣的朋友跟随小编一起来了解一下吧。
设置在os端哪些GPU可见,如果不可见,那肯定是不能够调用的~
import os GPU = '0,1,2' os.environ['CUDA_VISIBLE_DEVICES'] =GPU
torch.cuda.is_available()查看cuda是否可用。
if torch.cuda.is_available(): torch.backends.cudnn.benchmark = True ''' 如果网络的输入数据维度或类型上变化不大,设置 torch.backends.cudnn.benchmark = true 可以增加运行效率; 如果网络的输入数据在每次 iteration 都变化的话,会导致 cnDNN 每次都会去寻找一遍最优配置, 这样反而会降低运行效率。 这下就清晰明了很多了。 Benchmark模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异。 torch.backends.cudnn.benchmark = True 如果想要避免这种结果波动,设置: torch.backends.cudnn.deterministic = True '''
这句话也很常见,设置默认的device,优先gpu。
device = 'cuda' if torch.cuda.is_available() else 'cpu'
cpu挪到gpu
# 也可以是 device = torch.device('cuda:0') device = torch.device('cuda') a = torch.tensor([1,2,3]) b = a.to(device ) print(a) print(b)
out:
tensor([1, 2, 3])
tensor([1, 2, 3], device='cuda:0')
判断变量是否基于GPU。
a.is_cuda
查看有几个可用GPU。
torch.cuda.device_count()
查看GPU算力
# 返回gpu最大和最小计算能力,是一个tuple torch.cuda.get_device_capability()
设置默认哪一个GPU运算。
# 里面输入int类型的数字 torch.cuda.set_device()
抓取指定gpu的全名。
if torch.cuda.is_available(): device = torch.device('cuda') print('Using GPU: ', torch.cuda.get_device_name(0))
out:
'GeForce GTX 1050'
方法一:
a = torch.ones(3,4,device="cuda") print(a)
out:
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]], device='cuda:0')
方法二:
a = torch.cuda.FloatTensor(3, 4) print(a)
out:
tensor([[-1., -1., -1., -1.],
[-1., -1., -1., -1.],
[-1., -1., -1., -1.]], device='cuda:0')
方法一:tensor.to()
a = torch.ones(3,4) b = a.to("cuda") print(a) print(b)
out:
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]], device='cuda:0')
注意:.to()不仅可以转移device,还可以修改数据类型,比如:a.to(torch.double)
方法二:tensor.cuda()
a = torch.tensor([1., 2.]).cuda()
方法三:tensor.type()
dtype = torch.cuda.FloatTensor x = torch.rand(2,2).type(dtype)
方法四:torch.from_numpy(np_labels).cuda()
wm_labels = torch.from_numpy(np_labels).cuda()
在默认情况下,模型参数的优化(即训练)是在cpu上进行的,如果想要挪到GPU,得做如下修改:
import torch.nn as nn #假设前面已经定义好了模型 #创建模型 Hidnet = UnetGenerator_mnist() #把模型放入GPU Hidnet = nn.DataParallel(Hidnet.cuda()) #查看模型参数 list(Hidnet.parameters())[0]
out:
Parameter containing:
tensor([[[[ 0.1315, 0.0562, 0.1186],
[-0.1158, 0.1394, -0.0399],
[ 0.1728, 0.1051, -0.1034]],[[ 0.1702, -0.1208, -0.1134],
[-0.1449, 0.1912, 0.1727],
[ 0.1562, 0.1601, 0.1055]],[[ 0.1031, -0.0062, -0.0068],
[-0.0453, 0.1150, 0.0366],
[ 0.0680, -0.1234, -0.0988]]]], device='cuda:0', requires_grad=True)
可以看到 device=‘cuda:0' 啦
由于pytorch的whl 安装包名字都一样,所以我们很难区分到底是基于cuda 的哪个版本。
有一条指令可以查看
import torch print(torch.version.cuda)
以上就是关于pytorch中使用cuda处理数据的方法介绍,希望对大家学习pytorch cuda有帮助,想要了解更多pytorch cuda的内容,大家可以关注其他相关文章。
文本转载自脚本之家
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
内容介绍题目描述解题思路/算法分析/问题及解决实验代码运行结果题目描述本次实验为连接数据库的实验,并对数据库进行一些简单的操作,要实现的基本功能如下所示,要能连接并展现数据库里的数据,能够实现插入功能
Python的魔术方法一般以__methodname__的形式命名,如:__init__(构造方法), __getitem__、 __setitem__(subscriptable所需method),
这篇文章主要介绍了Python实现mysql数据库中的SQL文件生成和导入,首先通过将mysql数据导出到SQL文件中展开详细内容需要的小伙伴可以参考一下
大家好,本篇文章主要讲的是Python各种类型装饰器详细介绍,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览
这篇文章我们来了解一下Python numpy中setdiff1d函数的相关内容,下文介绍了setdiff1d函数的功能、语法、以及使用示例。有需要的朋友可以参考了解看看,接下来就跟随小编一起学习一下吧!
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008