详解AlexNet分类模型训练数据集的实现

Admin 2022-09-21 群英技术资讯 280 次浏览

在这篇文章中,我们来学习一下“详解AlexNet分类模型训练数据集的实现”的相关知识,下文有详细的讲解,易于大家学习和理解,有需要的朋友可以借鉴参考,下面就请大家跟着小编的思路一起来学习一下吧。
 

什么是AlexNet模型

AlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的。也是在那年之后,更多的更深的神经网络被提出,比如优秀的vgg,GoogLeNet。 这对于传统的机器学习分类算法而言,已经相当的出色。如下是其网络的结构,现在看来还是比较简单的。

这是一个AlexNet的网络结构图,其实并不复杂,很好的反应了AlexNet的结构:

1、一张原始图片被resize到(224,224,3);

2、使用步长为4x4,大小为11的卷积核对图像进行卷积,输出的特征层为96层,输出的shape为(55,55,96);

3、使用步长为2的最大池化层进行池化,此时输出的shape为(27,27,96)

4、使用步长为1x1,大小为5的卷积核对图像进行卷积,输出的特征层为256层,输出的shape为(27,27,256);

5、使用步长为2的最大池化层进行池化,此时输出的shape为(13,13,256);

6、使用步长为1x1,大小为3的卷积核对图像进行卷积,输出的特征层为384层,输出的shape为(13,13,384);

7、使用步长为1x1,大小为3的卷积核对图像进行卷积,输出的特征层为384层,输出的shape为(13,13,384);

8、使用步长为1x1,大小为3的卷积核对图像进行卷积,输出的特征层为256层,输出的shape为(13,13,256);

9、使用步长为2的最大池化层进行池化,此时输出的shape为(6,6,256);

10、两个全连接层,最后输出为1000类

最后输出的就是每个类的预测。

从上面的图也可以看出,其实最大的内存与计算消耗在于第一个全连接层的实现,它的参数有37M之多(这一点与VGG很类似,第一个全连接层参数巨多。),

训练前准备

1、数据集处理

在数据集处理之前,首先要下载猫狗数据集,地址如下。

链接:https://pan.baidu.com/s/1IfN8Cvt60n64bbC2gF4Ung

提取码:he9i

顺便直接下载我的源代码吧。

这里的源代码包括了所有的代码部分,训练集需要自己下载,大概训练2个小时就可以进行预测了。

本次教程准备使用model.fit_generator来训练模型,在训练模型之前,需要将数据集的内容保存到一个TXT文件中,便于读取。

txt文件的保存格式如下:

文件名;种类

具体操作步骤如下:

1、将训练文件存到"./data/image/train/"目录下。

2、调用如下代码:

import os
photos = os.listdir("./data/image/train/")
# 该部分用于将
with open("data/dataset.txt","w") as f:
    for photo in photos:
        name = photo.split(".")[0]
        if name=="cat":
            f.write(photo + ";0\n")
        elif name=="dog":
            f.write(photo + ";1\n")
f.close()

就可以得到训练数据集的文本文件。

2、创建Keras的AlexNet模型

该步就是按照AlexNet的结构创建AlexNet的模型。我试了原大小的模型,发现根本呢不收敛,可能是模型太复杂而且猫狗的特征太少了(也许是我打开方式不对)……于是我就缩减了模型,每个卷积层的filter减半,全连接层减为1024.

from keras.models import Sequential
from keras.layers import Dense,Activation,Conv2D,MaxPooling2D,Flatten,Dropout,BatchNormalization
from keras.datasets import mnist
from keras.utils import np_utils
from keras.optimizers import Adam
def AlexNet(input_shape=(224,224,3),output_shape=2):
    # AlexNet
    model = Sequential()
    # 使用步长为4x4,大小为11的卷积核对图像进行卷积,输出的特征层为96层,输出的shape为(55,55,96);
    # 所建模型后输出为48特征层
    model.add(
        Conv2D(
            filters=48, 
            kernel_size=(11,11),
            strides=(4,4),
            padding='valid',
            input_shape=input_shape,
            activation='relu'
        )
    )
    model.add(BatchNormalization())
    # 使用步长为2的最大池化层进行池化,此时输出的shape为(27,27,96)
    model.add(
        MaxPooling2D(
            pool_size=(3,3), 
            strides=(2,2), 
            padding='valid'
        )
    )
    # 使用步长为1x1,大小为5的卷积核对图像进行卷积,输出的特征层为256层,输出的shape为(27,27,256);
    # 所建模型后输出为128特征层
    model.add(
        Conv2D(
            filters=128, 
            kernel_size=(5,5), 
            strides=(1,1), 
            padding='same',
            activation='relu'
        )
    )
    model.add(BatchNormalization())
    # 使用步长为2的最大池化层进行池化,此时输出的shape为(13,13,256);
    model.add(
        MaxPooling2D(
            pool_size=(3,3),
            strides=(2,2),
            padding='valid'
        )
    )
    # 使用步长为1x1,大小为3的卷积核对图像进行卷积,输出的特征层为384层,输出的shape为(13,13,384);
    # 所建模型后输出为192特征层
    model.add(
        Conv2D(
            filters=192, 
            kernel_size=(3,3),
            strides=(1,1), 
            padding='same', 
            activation='relu'
        )
    ) 
    # 使用步长为1x1,大小为3的卷积核对图像进行卷积,输出的特征层为384层,输出的shape为(13,13,384);
    # 所建模型后输出为192特征层
    model.add(
        Conv2D(
            filters=192, 
            kernel_size=(3,3), 
            strides=(1,1), 
            padding='same', 
            activation='relu'
        )
    )
    # 使用步长为1x1,大小为3的卷积核对图像进行卷积,输出的特征层为256层,输出的shape为(13,13,256);
    # 所建模型后输出为128特征层
    model.add(
        Conv2D(
            filters=128, 
            kernel_size=(3,3), 
            strides=(1,1), 
            padding='same', 
            activation='relu'
        )
    )
    # 使用步长为2的最大池化层进行池化,此时输出的shape为(6,6,256);
    model.add(
        MaxPooling2D(
            pool_size=(3,3), 
            strides=(2,2), 
            padding='valid'
        )
    )
    # 两个全连接层,最后输出为1000类,这里改为2类
    # 缩减为1024
    model.add(Flatten())
    model.add(Dense(1024, activation='relu'))
    model.add(Dropout(0.25))
    model.add(Dense(1024, activation='relu'))
    model.add(Dropout(0.25))
    model.add(Dense(output_shape, activation='softmax'))
    return model

开始训练

1、训练的主函数

训练的主函数主要包括如下部分:

1、读取训练用txt,并打乱,利用该txt进行训练集和测试集的划分。

2、建立AlexNet模型

3、设定模型保存的方式、学习率下降的方式、是否需要早停。

4、利用model.fit_generator训练模型。

具体代码如下:

if __name__ == "__main__":
    # 模型保存的位置
    log_dir = "./logs/"
    # 打开数据集的txt
    with open(r".\data\dataset.txt","r") as f:
        lines = f.readlines()
    # 打乱行,这个txt主要用于帮助读取数据来训练
    # 打乱的数据更有利于训练
    np.random.seed(10101)
    np.random.shuffle(lines)
    np.random.seed(None)
    # 90%用于训练,10%用于估计。
    num_val = int(len(lines)*0.1)
    num_train = len(lines) - num_val
    # 建立AlexNet模型
    model = AlexNet()
    # 保存的方式,3世代保存一次
    checkpoint_period1 = ModelCheckpoint(
                                    log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
                                    monitor='acc', 
                                    save_weights_only=False, 
                                    save_best_only=True, 
                                    period=3
                                )
    # 学习率下降的方式,acc三次不下降就下降学习率继续训练
    reduce_lr = ReduceLROnPlateau(
                            monitor='acc', 
                            factor=0.5, 
                            patience=3, 
                            verbose=1
                        )
    # 是否需要早停,当val_loss一直不下降的时候意味着模型基本训练完毕,可以停止
    early_stopping = EarlyStopping(
                            monitor='val_loss', 
                            min_delta=0, 
                            patience=10, 
                            verbose=1
                        )
    # 交叉熵
    model.compile(loss = 'categorical_crossentropy',
            optimizer = Adam(lr=1e-3),
            metrics = ['accuracy'])
    # 一次的训练集大小
    batch_size = 64
    print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
    # 开始训练
    model.fit_generator(generate_arrays_from_file(lines[:num_train], batch_size),
            steps_per_epoch=max(1, num_train//batch_size),
            validation_data=generate_arrays_from_file(lines[num_train:], batch_size),
            validation_steps=max(1, num_val//batch_size),
            epochs=150,
            initial_epoch=0,
            callbacks=[checkpoint_period1, reduce_lr])
    model.save_weights(log_dir+'last1.h5')

model.fit_generator需要用到python的生成器来滚动读取数据,具体方法看第二步。

2、Keras数据生成器

Keras的数据生成器就是在一个while 1的无限循环中不断生成batch大小的数据集。

def generate_arrays_from_file(lines,batch_size):
    # 获取总长度
    n = len(lines)
    i = 0
    while 1:
        X_train = []
        Y_train = []
        # 获取一个batch_size大小的数据
        for b in range(batch_size):
            if i==0:
                np.random.shuffle(lines)
            name = lines[i].split(';')[0]
            # 从文件中读取图像
            img = cv2.imread(r".\data\image\train" + '/' + name)
            img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
            img = img/255
            X_train.append(img)
            Y_train.append(lines[i].split(';')[1])
            # 读完一个周期后重新开始
            i = (i+1) % n
        # 处理图像
        X_train = utils.resize_image(X_train,(224,224))
        X_train = X_train.reshape(-1,224,224,3)
        Y_train = np_utils.to_categorical(np.array(Y_train),num_classes= 2)   
        yield (X_train, Y_train)

在其中用到了一些处理函数,我存在了utils.py工具人文件中。

import matplotlib.image as mpimg
import numpy as np
import cv2
import tensorflow as tf
from tensorflow.python.ops import array_ops
def load_image(path):
    # 读取图片,rgb
    img = mpimg.imread(path)
    # 将图片修剪成中心的正方形
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    return crop_img
def resize_image(image, size):
    with tf.name_scope('resize_image'):
        images = []
        for i in image:
            i = cv2.resize(i, size)
            images.append(i)
        images = np.array(images)
        return images
def print_answer(argmax):
    with open("./data/model/index_word.txt","r",encoding='utf-8') as f:
        synset = [l.split(";")[1][:-1] for l in f.readlines()]
    print(synset[argmax])
    return synset[argmax]

3、主训练函数全部代码

大家可以整体看看哈:

from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
from keras.utils import np_utils
from keras.optimizers import Adam
from model.AlexNet import AlexNet
import numpy as np
import utils
import cv2
from keras import backend as K
K.set_image_dim_ordering('tf')
def generate_arrays_from_file(lines,batch_size):
    # 获取总长度
    n = len(lines)
    i = 0
    while 1:
        X_train = []
        Y_train = []
        # 获取一个batch_size大小的数据
        for b in range(batch_size):
            if i==0:
                np.random.shuffle(lines)
            name = lines[i].split(';')[0]
            # 从文件中读取图像
            img = cv2.imread(r".\data\image\train" + '/' + name)
            img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
            img = img/255
            X_train.append(img)
            Y_train.append(lines[i].split(';')[1])
            # 读完一个周期后重新开始
            i = (i+1) % n
        # 处理图像
        X_train = utils.resize_image(X_train,(224,224))
        X_train = X_train.reshape(-1,224,224,3)
        Y_train = np_utils.to_categorical(np.array(Y_train),num_classes= 2)   
        yield (X_train, Y_train)
if __name__ == "__main__":
    # 模型保存的位置
    log_dir = "./logs/"
    # 打开数据集的txt
    with open(r".\data\dataset.txt","r") as f:
        lines = f.readlines()
    # 打乱行,这个txt主要用于帮助读取数据来训练
    # 打乱的数据更有利于训练
    np.random.seed(10101)
    np.random.shuffle(lines)
    np.random.seed(None)
    # 90%用于训练,10%用于估计。
    num_val = int(len(lines)*0.1)
    num_train = len(lines) - num_val
    # 建立AlexNet模型
    model = AlexNet()
    # 保存的方式,3世代保存一次
    checkpoint_period1 = ModelCheckpoint(
                                    log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
                                    monitor='acc', 
                                    save_weights_only=False, 
                                    save_best_only=True, 
                                    period=3
                                )
    # 学习率下降的方式,acc三次不下降就下降学习率继续训练
    reduce_lr = ReduceLROnPlateau(
                            monitor='acc', 
                            factor=0.5, 
                            patience=3, 
                            verbose=1
                        )
    # 是否需要早停,当val_loss一直不下降的时候意味着模型基本训练完毕,可以停止
    early_stopping = EarlyStopping(
                            monitor='val_loss', 
                            min_delta=0, 
                            patience=10, 
                            verbose=1
                        )
    # 交叉熵
    model.compile(loss = 'categorical_crossentropy',
            optimizer = Adam(lr=1e-3),
            metrics = ['accuracy'])
    # 一次的训练集大小
    batch_size = 64
    print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
    # 开始训练
    model.fit_generator(generate_arrays_from_file(lines[:num_train], batch_size),
            steps_per_epoch=max(1, num_train//batch_size),
            validation_data=generate_arrays_from_file(lines[num_train:], batch_size),
            validation_steps=max(1, num_val//batch_size),
            epochs=150,
            initial_epoch=0,
            callbacks=[checkpoint_period1, reduce_lr, early_stopping ])
    model.save_weights(log_dir+'last1.h5')

训练结果

在完成上述的一大堆内容的配置后就可以开始训练了,所有文件的构架如下:

……训练是真的慢

……
Epoch 36/50
175/175 [==============================] - 219s 1s/step - loss: 0.0124 - acc: 0.9962 - val_loss: 0.5256 - val_acc: 0.9034
Epoch 37/50
175/175 [==============================] - 178s 1s/step - loss: 0.0028 - acc: 0.9991 - val_loss: 0.7911 - val_acc: 0.9034
Epoch 38/50
175/175 [==============================] - 174s 992ms/step - loss: 0.0047 - acc: 0.9987 - val_loss: 0.6690 - val_acc: 0.8910
Epoch 39/50
175/175 [==============================] - 241s 1s/step - loss: 0.0044 - acc: 0.9986 - val_loss: 0.6518 - val_acc: 0.9001
Epoch 40/50
142/175 [=======================>......] - ETA: 1:07 - loss: 0.0074 - acc: 0.9976

差不多是这样,在测试集上有90的准确度呢!我们拿一个模型预测一下看看。

import numpy as np
import utils
import cv2
from keras import backend as K
from model.AlexNet import AlexNet
K.set_image_dim_ordering('tf')
if __name__ == "__main__":
    model = AlexNet()
    # 载入模型
    model.load_weights("./logs/ep039-loss0.004-val_loss0.652.h5")
    # 载入图片,并处理
    img = cv2.imread("./Test.jpg")
    img_RGB = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
    img_nor = img_RGB/255
    img_nor = np.expand_dims(img_nor,axis = 0)
    img_resize = utils.resize_image(img_nor,(224,224))
	# 预测~!
    #utils.print_answer(np.argmax(model.predict(img)))
    print(utils.print_answer(np.argmax(model.predict(img_resize))))
    cv2.imshow("ooo",img)
    cv2.waitKey(0)

预测结果为:

猫猫

大功告成。


这篇关于“详解AlexNet分类模型训练数据集的实现”的文章就介绍到这了,更多相关的内容,欢迎关注群英网络,小编将为大家输出更多高质量的实用文章! 群英智防CDN,智能加速解决方案
标签: AlexNet

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服