自然语言提取文本的热频词的思路和方法是什么

Admin 2022-09-21 群英技术资讯 265 次浏览

在这篇文章中我们来了解一下“自然语言提取文本的热频词的思路和方法是什么”,一些朋友可能会遇到这方面的问题,对此在下文小编向大家来讲解一下,内容详细,易于理解,希望大家阅读完这篇能有收获哦,有需要的朋友就往下看吧!


主要就是通过jieba的posseg模块将一段文字分段并赋予不同字段不同意思。然后通过频率计算出热频词

数据放在文章里面了,就不用花积分下载了

**

代码

# TODO                鸟欲高飞,必先展翅
# TODO                 向前的人 :Jhon
import jieba.posseg as psg
text=open("data/冬奥会评论区的数据.txt", "r", encoding="utf-8").read()
text_psg=psg.lcut(text)
#  TODO  杨过 nr
print('人物名词性标注为:\n',' '.join(['{}{}'.format(w,t) for w,t in text_psg]))
name_counts={}  #定义字典用于存储词及其出现的次数
for word_pair in text_psg:
    if len(word_pair.word)==1:
        continue
    else:
        if word_pair.flag=="nr" or word_pair.flag=="z":    # TODO   flag方法
            name_counts[word_pair]=name_counts.get(word_pair,0)+1  #遍历所有词,每次出现对应的词都加1

# print(name_counts)  #{pair('叶老汉', 'nr'): 2, pair('卫州', 'nr'): 1, pair('叶三姐', 'nr'): 10,}
item=name_counts.items()
items=list(item)
# print(items)     #  TODO   [(pair('鲁滨逊', 'nr'), 1), (pair('武功', 'nr'), 825), (pair('言语', 'nr'), 96)]
items.sort(key=lambda x:x[1] ,reverse=True)   #根据词语出现的顺序从大到小排序
name_list=open('./data/冬奥会人名出现次数.txt',"w",encoding="utf-8")
for i in range(len(items)):
    name,pos=items[i][0]
    count=items[i][1]
    name_count=name+': '+str(count)
    name_list.write(name_count+'\n')
name_list.close()

代码里面注释的已经非常清楚,不同的可以私信我,或者在评论区打出来,看到了会及时解惑的。
**

数据

v热v我,夺冠后齐广璞再次收获金墩墩!此前他在空中技巧混合团体比赛中获得亚军。
拉多拉夫,在本届冬奥会已斩获一金一银。
虎口水,齐广璞一金一银拿到金墩墩的他不断擦拭泪水,老将不易!
拉科罗l,在刚刚结束的自由式滑雪男子空中技巧决赛中,
酒啊就是你,中国队选手齐广璞在本届冬奥会上首次拿出5.0的高难度动作
会积极,并以出色的发挥获得129.00分,夺得金牌!这是继2006年都灵冬奥会
街廓,2月16日晚的崇礼,男子自由式滑雪空中技巧决赛
阿克苏九年,他的难度5.0动作拿下129分,圆梦夺金!赛后,齐广璞也热泪盈眶!
啊可能是,这也是中国代表团本届冬奥会的第七枚金牌!“我做到了,让五星红旗飘扬在最高处。
啊空间你是,但其实还不够好,本来还能有更高的分数。”
暗杀即可,中国老将齐广璞发挥出色。图/新华社
后即可,15日晚的男子资格赛,齐广璞和贾宗洋都是第1轮就凭借高分动作,
哈卡斯,排名前两位直接晋级决赛,后者更是高质量再现4.425动作,拿到125.67分。
JJ看来我,老将贾宗洋拼尽了全力。图/新华社
哦怕,备战中,齐广璞曾遭遇困难,有一段时间情绪不是很好。
喀喀喀,精神压力较大,长时间失眠,但他都克服了。
阿克苏六年,“因为有梦想,什么都不是问题。”北京冬奥会就是他前进的最大动力。
郝鹏,这些年,齐广璞拿到的奖项不胜枚举,世界杯冠军、世锦赛冠军……不过。
肯德基,他参加过温哥华、索契、平昌三届冬奥会,都未能收获奖牌,这次能获得第

数据每行逗号前是名字,逗号后的是评论内容,数据不太正统,先凑合着用,后面你就会发现有点那个味道了。

结果:

齐广璞: 79
冰墩墩: 70
苏翊鸣: 44
谷爱凌: 43
徐梦桃: 41
滑雪: 30
范可新: 15
贾宗洋: 13
高亭宇: 11
平昌: 6
滑冰: 6
世锦赛: 5
索契: 5
晋级: 4
安斯卡: 4
韩晓鹏: 4
张虹: 4
任子威: 4
小鸣: 4
温哥华: 3
元老: 3
张家口: 3
阿克萨: 3
祝贺: 3
吉祥物: 3
萨克森: 3
张杰: 3
金墩墩: 2
亚军: 2
都灵: 2
安康: 2
阿喀琉斯: 2
杨紫: 2
桂冠: 2
凌空: 2
韩聪: 2
融宝: 2
宝融宝: 2
雪容融: 2
明星: 2
苗子: 2
五星红旗: 1
最高处: 1
哈卡斯: 1
郝鹏: 1
肯德基: 1
李玉: 1
刘晨周: 1
乌克兰: 1
宝贵: 1
阿奎那: 1
梦中人: 1
周转: 1
高达: 1
斯诺克: 1
满怀希望: 1
阿森纳: 1
内存卡: 1
利利斯: 1
屠龙刀: 1
东道主: 1
马克: 1
阿基: 1
正佳: 1
天成: 1
折桂: 1
热切地: 1
齐天大圣: 1
哈萨克: 1
宝藏: 1
宝贝: 1
贺卡: 1
谢幕: 1
范迪安: 1
雪容融: 1
依旧: 1
舒斯: 1
施尼: 1
曼德尔: 1
肥墩墩: 1
圣保罗: 1
荣幸之至: 1
熊猫: 1
滚滚: 1
仰泳: 1
太棒了: 1
康弘: 1
最佳: 1
大力支持: 1
小胖: 1
祝福: 1
施图拜: 1
孙琳琳: 1
张雨婷: 1
终封王: 1
褚鹏: 1
阿曼: 1
陶士文: 1

可以发现结果和前面的还是挺准的。当然还可以继续优化,也可以自己训练模型,但是训练集需要很大。我这个模型是官方的,训练模型数据1.84GB

因为文本上传太多会被判刷量,所以删除了一部分。结果是之前的,没有改变,需要文本的可以去下载。测试数据下载


这篇关于“自然语言提取文本的热频词的思路和方法是什么”的文章就介绍到这了,更多相关的内容,欢迎关注群英网络,小编将为大家输出更多高质量的实用文章! 群英智防CDN,智能加速解决方案
标签: 自然语言

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服