python的pandas函数用法是什么?
Admin 2021-08-18 群英技术资讯 454 次浏览
python数据分析中,pandas函数是比较实用的,对此下面小编就给大家分享一下python的pandas函数用法,有需要的朋友可以参考学习,接下来我们一起来看看吧。
1. 可直接使用NumPy的函数
示例代码:
# Numpy ufunc 函数 df = pd.DataFrame(np.random.randn(5,4) - 1) print(df) print(np.abs(df))
运行结果:
0 1 2 3
0 -0.062413 0.844813 -1.853721 -1.980717
1 -0.539628 -1.975173 -0.856597 -2.612406
2 -1.277081 -1.088457 -0.152189 0.530325
3 -1.356578 -1.996441 0.368822 -2.211478
4 -0.562777 0.518648 -2.007223 0.059411
0 1 2 3
0 0.062413 0.844813 1.853721 1.980717
1 0.539628 1.975173 0.856597 2.612406
2 1.277081 1.088457 0.152189 0.530325
3 1.356578 1.996441 0.368822 2.211478
4 0.562777 0.518648 2.007223 0.059411
2. 通过apply将函数应用到列或行上
示例代码:
# 使用apply应用行或列数据 #f = lambda x : x.max() print(df.apply(lambda x : x.max()))
运行结果:
0 -0.062413
1 0.844813
2 0.368822
3 0.530325
dtype: float64
3.注意指定轴的方向,默认axis=0,方向是列
示例代码:
# 指定轴方向,axis=1,方向是行 print(df.apply(lambda x : x.max(), axis=1))
运行结果:
0 0.844813
1 -0.539628
2 0.530325
3 0.368822
4 0.518648
dtype: float64
4. 通过applymap将函数应用到每个数据上
示例代码:
# 使用applymap应用到每个数据 f2 = lambda x : '%.2f' % x print(df.applymap(f2))
运行结果:
0 1 2 3
0 -0.06 0.84 -1.85 -1.98
1 -0.54 -1.98 -0.86 -2.61
2 -1.28 -1.09 -0.15 0.53
3 -1.36 -2.00 0.37 -2.21
4 -0.56 0.52 -2.01 0.06
1. 索引排序
sort_index()
排序默认使用升序排序,ascending=False 为降序排序
示例代码:
# Series s4 = pd.Series(range(10, 15), index = np.random.randint(5, size=5)) print(s4) # 索引排序 s4.sort_index() # 0 0 1 3 3
运行结果:
0 10
3 11
1 12
3 13
0 14
dtype: int64
0 10
0 14
1 12
3 11
3 13
dtype: int64
2.对DataFrame操作时注意轴方向
示例代码:
# DataFrame df4 = pd.DataFrame(np.random.randn(3, 5), index=np.random.randint(3, size=3), columns=np.random.randint(5, size=5)) print(df4) df4_isort = df4.sort_index(axis=1, ascending=False) print(df4_isort) # 4 2 1 1 0
运行结果:
1 4 0 1 2
2 -0.416686 -0.161256 0.088802 -0.004294 1.164138
1 -0.671914 0.531256 0.303222 -0.509493 -0.342573
1 1.988321 -0.466987 2.787891 -1.105912 0.889082
4 2 1 1 0
2 -0.161256 1.164138 -0.416686 -0.004294 0.088802
1 0.531256 -0.342573 -0.671914 -0.509493 0.303222
1 -0.466987 0.889082 1.988321 -1.105912 2.787891
3. 按值排序
sort_values(by='column name')
根据某个唯一的列名进行排序,如果有其他相同列名则报错。
示例代码:
# 按值排序 df4_vsort = df4.sort_values(by=0, ascending=False) print(df4_vsort)
运行结果:
1 4 0 1 2
1 1.988321 -0.466987 2.787891 -1.105912 0.889082
1 -0.671914 0.531256 0.303222 -0.509493 -0.342573
2 -0.416686 -0.161256 0.088802 -0.004294 1.164138
示例代码:
df_data = pd.DataFrame([np.random.randn(3), [1., 2., np.nan], [np.nan, 4., np.nan], [1., 2., 3.]]) print(df_data.head())
运行结果:
0 1 2
0 -0.281885 -0.786572 0.487126
1 1.000000 2.000000 NaN
2 NaN 4.000000 NaN
3 1.000000 2.000000 3.000000
1. 判断是否存在缺失值:isnull()
示例代码:
# isnull print(df_data.isnull())
运行结果:
0 1 2
0 False False False
1 False False True
2 True False True
3 False False False
2. 丢弃缺失数据:dropna()
根据axis轴方向,丢弃包含NaN的行或列。 示例代码:
# dropna print(df_data.dropna()) print(df_data.dropna(axis=1))
运行结果:
0 1 2
0 -0.281885 -0.786572 0.487126
3 1.000000 2.000000 3.000000
1
0 -0.786572
1 2.000000
2 4.000000
3 2.000000
3. 填充缺失数据:fillna()
示例代码:
# fillna print(df_data.fillna(-100.))
运行结果:
0 1 2
0 -0.281885 -0.786572 0.487126
1 1.000000 2.000000 -100.000000
2 -100.000000 4.000000 -100.000000
3 1.000000 2.000000 3.000000
相信现在大家对于python的pandas函数的用法应该都有一定的了解了,上述示例有一定的借鉴价值,有需要的朋友可以参考,希望对大家学习Python数据分析有帮助,想要了解更多Python数据分析的相关知识,大家可以继续关注其他文章。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了python 数据保存为npy和npz格式并读取,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
这篇文章介绍了Python网络编程之HTTP客户端模块urllib与urllib3,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
看了许多关于PyTorch的入门文章,大抵是从torchvision.datasets中自带的数据集进行训练,导致很难把PyTorch运用于自己的数据集上,真正地灵活运用PyTorch,本文详细介绍了怎么利用Pytorch实现猫狗分类,需要的朋友可以参考下
本篇文章给大家带来了关于Python的相关知识,其中主要介绍了python类参数定义及数据扩展方式unsqueeze/expand,文章通过围绕主题展开详细的内容介绍,下面一起来看一下,希望对大家有帮
假如我写了一个函数 fdef f(): print('hello')之后我想知道这段函数执行所要的时间,这好办,我只要将代码改为如下就行import timedef f(): start = time.time()
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008