facenet是什么,用处和应用是什么
Admin 2022-09-17 群英技术资讯 510 次浏览
最近学了我最喜欢的mtcnn,可是光有人脸有啥用啊,咱得知道who啊,开始facenet提取特征之旅。
谷歌人脸检测算法,发表于 CVPR 2015,利用相同人脸在不同角度等姿态的照片下有高内聚性,不同人脸有低耦合性,提出使用 cnn + triplet mining 方法,在 LFW 数据集上准确度达到 99.63%。
通过 CNN 将人脸映射到欧式空间的特征向量上,实质上:不同图片人脸特征的距离较大;通过相同个体的人脸的距离,总是小于不同个体的人脸这一先验知识训练网络。
测试时只需要计算人脸特征EMBEDDING,然后计算距离使用阈值即可判定两张人脸照片是否属于相同的个体。
简单来讲,在使用阶段,facenet即是:
1、输入一张人脸图片
2、通过深度学习网络提取特征
3、L2标准化
4、得到128维特征向量。
代码下载链接:https://pan.baidu.com/s/1T2b5u2mZ9yMtKt3TvLxTaw
提取码:xmg0
Inception-ResNetV1是facenet使用的主干网络。
它的结构很有意思!
如图所示为整个网络的主干结构:
可以看到里面的结构分为几个重要的部分
1、stem
2、Inception-resnet-A
3、Inception-resnet-B
4、Inception-resnet-C
在facenet里,它的Input为160x160x3大小,输入后进行:
两次卷积 -> 一次最大池化 -> 两次卷积
python实现代码如下:
inputs = Input(shape=input_shape) # 160,160,3 -> 77,77,64 x = conv2d_bn(inputs, 32, 3, strides=2, padding='valid', name='Conv2d_1a_3x3') x = conv2d_bn(x, 32, 3, padding='valid', name='Conv2d_2a_3x3') x = conv2d_bn(x, 64, 3, name='Conv2d_2b_3x3') # 77,77,64 -> 38,38,64 x = MaxPooling2D(3, strides=2, name='MaxPool_3a_3x3')(x) # 38,38,64 -> 17,17,256 x = conv2d_bn(x, 80, 1, padding='valid', name='Conv2d_3b_1x1') x = conv2d_bn(x, 192, 3, padding='valid', name='Conv2d_4a_3x3') x = conv2d_bn(x, 256, 3, strides=2, padding='valid', name='Conv2d_4b_3x3')
Inception-resnet-A的结构分为四个分支
1、未经处理直接输出
2、经过一次1x1的32通道的卷积处理
3、经过一次1x1的32通道的卷积处理和一次3x3的32通道的卷积处理
4、经过一次1x1的32通道的卷积处理和两次3x3的32通道的卷积处理
234步的结果堆叠后j进行一次卷积,并与第一步的结果相加,实质上这是一个残差网络结构。
实现代码如下:
branch_0 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_1x1', 0)) branch_1 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_0a_1x1', 1)) branch_1 = conv2d_bn(branch_1, 32, 3, name=name_fmt('Conv2d_0b_3x3', 1)) branch_2 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_0a_1x1', 2)) branch_2 = conv2d_bn(branch_2, 32, 3, name=name_fmt('Conv2d_0b_3x3', 2)) branch_2 = conv2d_bn(branch_2, 32, 3, name=name_fmt('Conv2d_0c_3x3', 2)) branches = [branch_0, branch_1, branch_2] mixed = Concatenate(axis=channel_axis, name=name_fmt('Concatenate'))(branches) up = conv2d_bn(mixed,K.int_shape(x)[channel_axis],1,activation=None,use_bias=True, name=name_fmt('Conv2d_1x1')) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={'scale': scale})(up) x = add([x, up]) if activation is not None: x = Activation(activation, name=name_fmt('Activation'))(x)
Inception-resnet-B的结构分为四个分支
1、未经处理直接输出
2、经过一次1x1的128通道的卷积处理
3、经过一次1x1的128通道的卷积处理、一次1x7的128通道的卷积处理和一次7x1的128通道的卷积处理
23步的结果堆叠后j进行一次卷积,并与第一步的结果相加,实质上这是一个残差网络结构。
实现代码如下:
branch_0 = conv2d_bn(x, 128, 1, name=name_fmt('Conv2d_1x1', 0)) branch_1 = conv2d_bn(x, 128, 1, name=name_fmt('Conv2d_0a_1x1', 1)) branch_1 = conv2d_bn(branch_1, 128, [1, 7], name=name_fmt('Conv2d_0b_1x7', 1)) branch_1 = conv2d_bn(branch_1, 128, [7, 1], name=name_fmt('Conv2d_0c_7x1', 1)) branches = [branch_0, branch_1] mixed = Concatenate(axis=channel_axis, name=name_fmt('Concatenate'))(branches) up = conv2d_bn(mixed,K.int_shape(x)[channel_axis],1,activation=None,use_bias=True, name=name_fmt('Conv2d_1x1')) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={'scale': scale})(up) x = add([x, up]) if activation is not None: x = Activation(activation, name=name_fmt('Activation'))(x)
Inception-resnet-B的结构分为四个分支
1、未经处理直接输出
2、经过一次1x1的128通道的卷积处理
3、经过一次1x1的192通道的卷积处理、一次1x3的192通道的卷积处理和一次3x1的128通道的卷积处理
23步的结果堆叠后j进行一次卷积,并与第一步的结果相加,实质上这是一个残差网络结构。
实现代码如下:
branch_0 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_1x1', 0)) branch_1 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_0a_1x1', 1)) branch_1 = conv2d_bn(branch_1, 192, [1, 3], name=name_fmt('Conv2d_0b_1x3', 1)) branch_1 = conv2d_bn(branch_1, 192, [3, 1], name=name_fmt('Conv2d_0c_3x1', 1)) branches = [branch_0, branch_1] mixed = Concatenate(axis=channel_axis, name=name_fmt('Concatenate'))(branches) up = conv2d_bn(mixed,K.int_shape(x)[channel_axis],1,activation=None,use_bias=True, name=name_fmt('Conv2d_1x1')) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={'scale': scale})(up) x = add([x, up]) if activation is not None: x = Activation(activation, name=name_fmt('Activation'))(x)
from functools import partial from keras.models import Model from keras.layers import Activation from keras.layers import BatchNormalization from keras.layers import Concatenate from keras.layers import Conv2D from keras.layers import Dense from keras.layers import Dropout from keras.layers import GlobalAveragePooling2D from keras.layers import Input from keras.layers import Lambda from keras.layers import MaxPooling2D from keras.layers import add from keras import backend as K def scaling(x, scale): return x * scale def _generate_layer_name(name, branch_idx=None, prefix=None): if prefix is None: return None if branch_idx is None: return '_'.join((prefix, name)) return '_'.join((prefix, 'Branch', str(branch_idx), name)) def conv2d_bn(x,filters,kernel_size,strides=1,padding='same',activation='relu',use_bias=False,name=None): x = Conv2D(filters, kernel_size, strides=strides, padding=padding, use_bias=use_bias, name=name)(x) if not use_bias: x = BatchNormalization(axis=3, momentum=0.995, epsilon=0.001, scale=False, name=_generate_layer_name('BatchNorm', prefix=name))(x) if activation is not None: x = Activation(activation, name=_generate_layer_name('Activation', prefix=name))(x) return x def _inception_resnet_block(x, scale, block_type, block_idx, activation='relu'): channel_axis = 3 if block_idx is None: prefix = None else: prefix = '_'.join((block_type, str(block_idx))) name_fmt = partial(_generate_layer_name, prefix=prefix) if block_type == 'Block35': branch_0 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_1x1', 0)) branch_1 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_0a_1x1', 1)) branch_1 = conv2d_bn(branch_1, 32, 3, name=name_fmt('Conv2d_0b_3x3', 1)) branch_2 = conv2d_bn(x, 32, 1, name=name_fmt('Conv2d_0a_1x1', 2)) branch_2 = conv2d_bn(branch_2, 32, 3, name=name_fmt('Conv2d_0b_3x3', 2)) branch_2 = conv2d_bn(branch_2, 32, 3, name=name_fmt('Conv2d_0c_3x3', 2)) branches = [branch_0, branch_1, branch_2] elif block_type == 'Block17': branch_0 = conv2d_bn(x, 128, 1, name=name_fmt('Conv2d_1x1', 0)) branch_1 = conv2d_bn(x, 128, 1, name=name_fmt('Conv2d_0a_1x1', 1)) branch_1 = conv2d_bn(branch_1, 128, [1, 7], name=name_fmt('Conv2d_0b_1x7', 1)) branch_1 = conv2d_bn(branch_1, 128, [7, 1], name=name_fmt('Conv2d_0c_7x1', 1)) branches = [branch_0, branch_1] elif block_type == 'Block8': branch_0 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_1x1', 0)) branch_1 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_0a_1x1', 1)) branch_1 = conv2d_bn(branch_1, 192, [1, 3], name=name_fmt('Conv2d_0b_1x3', 1)) branch_1 = conv2d_bn(branch_1, 192, [3, 1], name=name_fmt('Conv2d_0c_3x1', 1)) branches = [branch_0, branch_1] mixed = Concatenate(axis=channel_axis, name=name_fmt('Concatenate'))(branches) up = conv2d_bn(mixed,K.int_shape(x)[channel_axis],1,activation=None,use_bias=True, name=name_fmt('Conv2d_1x1')) up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={'scale': scale})(up) x = add([x, up]) if activation is not None: x = Activation(activation, name=name_fmt('Activation'))(x) return x def InceptionResNetV1(input_shape=(160, 160, 3), classes=128, dropout_keep_prob=0.8): channel_axis = 3 inputs = Input(shape=input_shape) # 160,160,3 -> 77,77,64 x = conv2d_bn(inputs, 32, 3, strides=2, padding='valid', name='Conv2d_1a_3x3') x = conv2d_bn(x, 32, 3, padding='valid', name='Conv2d_2a_3x3') x = conv2d_bn(x, 64, 3, name='Conv2d_2b_3x3') # 77,77,64 -> 38,38,64 x = MaxPooling2D(3, strides=2, name='MaxPool_3a_3x3')(x) # 38,38,64 -> 17,17,256 x = conv2d_bn(x, 80, 1, padding='valid', name='Conv2d_3b_1x1') x = conv2d_bn(x, 192, 3, padding='valid', name='Conv2d_4a_3x3') x = conv2d_bn(x, 256, 3, strides=2, padding='valid', name='Conv2d_4b_3x3') # 5x Block35 (Inception-ResNet-A block): for block_idx in range(1, 6): x = _inception_resnet_block(x,scale=0.17,block_type='Block35',block_idx=block_idx) # Reduction-A block: # 17,17,256 -> 8,8,896 name_fmt = partial(_generate_layer_name, prefix='Mixed_6a') branch_0 = conv2d_bn(x, 384, 3,strides=2,padding='valid',name=name_fmt('Conv2d_1a_3x3', 0)) branch_1 = conv2d_bn(x, 192, 1, name=name_fmt('Conv2d_0a_1x1', 1)) branch_1 = conv2d_bn(branch_1, 192, 3, name=name_fmt('Conv2d_0b_3x3', 1)) branch_1 = conv2d_bn(branch_1,256,3,strides=2,padding='valid',name=name_fmt('Conv2d_1a_3x3', 1)) branch_pool = MaxPooling2D(3,strides=2,padding='valid',name=name_fmt('MaxPool_1a_3x3', 2))(x) branches = [branch_0, branch_1, branch_pool] x = Concatenate(axis=channel_axis, name='Mixed_6a')(branches) # 10x Block17 (Inception-ResNet-B block): for block_idx in range(1, 11): x = _inception_resnet_block(x, scale=0.1, block_type='Block17', block_idx=block_idx) # Reduction-B block # 8,8,896 -> 3,3,1792 name_fmt = partial(_generate_layer_name, prefix='Mixed_7a') branch_0 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 0)) branch_0 = conv2d_bn(branch_0,384,3,strides=2,padding='valid',name=name_fmt('Conv2d_1a_3x3', 0)) branch_1 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 1)) branch_1 = conv2d_bn(branch_1,256,3,strides=2,padding='valid',name=name_fmt('Conv2d_1a_3x3', 1)) branch_2 = conv2d_bn(x, 256, 1, name=name_fmt('Conv2d_0a_1x1', 2)) branch_2 = conv2d_bn(branch_2, 256, 3, name=name_fmt('Conv2d_0b_3x3', 2)) branch_2 = conv2d_bn(branch_2,256,3,strides=2,padding='valid',name=name_fmt('Conv2d_1a_3x3', 2)) branch_pool = MaxPooling2D(3,strides=2,padding='valid',name=name_fmt('MaxPool_1a_3x3', 3))(x) branches = [branch_0, branch_1, branch_2, branch_pool] x = Concatenate(axis=channel_axis, name='Mixed_7a')(branches) # 5x Block8 (Inception-ResNet-C block): for block_idx in range(1, 6): x = _inception_resnet_block(x, scale=0.2, block_type='Block8', block_idx=block_idx) x = _inception_resnet_block(x,scale=1.,activation=None,block_type='Block8',block_idx=6) # 平均池化 x = GlobalAveragePooling2D(name='AvgPool')(x) x = Dropout(1.0 - dropout_keep_prob, name='Dropout')(x) # 全连接层到128 x = Dense(classes, use_bias=False, name='Bottleneck')(x) bn_name = _generate_layer_name('BatchNorm', prefix='Bottleneck') x = BatchNormalization(momentum=0.995, epsilon=0.001, scale=False, name=bn_name)(x) # 创建模型 model = Model(inputs, x, name='inception_resnet_v1') return model
利用opencv自带的cv2.CascadeClassifier检测人脸并实现人脸的比较:根目录摆放方式如下:
demo文件如下:
import numpy as np import cv2 from net.inception import InceptionResNetV1 from keras.models import load_model import face_recognition #---------------------------------# # 图片预处理 # 高斯归一化 #---------------------------------# def pre_process(x): if x.ndim == 4: axis = (1, 2, 3) size = x[0].size elif x.ndim == 3: axis = (0, 1, 2) size = x.size else: raise ValueError('Dimension should be 3 or 4') mean = np.mean(x, axis=axis, keepdims=True) std = np.std(x, axis=axis, keepdims=True) std_adj = np.maximum(std, 1.0/np.sqrt(size)) y = (x - mean) / std_adj return y #---------------------------------# # l2标准化 #---------------------------------# def l2_normalize(x, axis=-1, epsilon=1e-10): output = x / np.sqrt(np.maximum(np.sum(np.square(x), axis=axis, keepdims=True), epsilon)) return output #---------------------------------# # 计算128特征值 #---------------------------------# def calc_128_vec(model,img): face_img = pre_process(img) pre = model.predict(face_img) pre = l2_normalize(np.concatenate(pre)) pre = np.reshape(pre,[1,128]) return pre #---------------------------------# # 获取人脸框 #---------------------------------# def get_face_img(cascade,filepaths,margin): aligned_images = [] img = cv2.imread(filepaths) img = cv2.cvtColor(img,cv2.COLOR_BGRA2RGB) faces = cascade.detectMultiScale(img, scaleFactor=1.1, minNeighbors=3) (x, y, w, h) = faces[0] print(x, y, w, h) cropped = img[y-margin//2:y+h+margin//2, x-margin//2:x+w+margin//2, :] aligned = cv2.resize(cropped, (160, 160)) aligned_images.append(aligned) return np.array(aligned_images) #---------------------------------# # 计算人脸距离 #---------------------------------# def face_distance(face_encodings, face_to_compare): if len(face_encodings) == 0: return np.empty((0)) return np.linalg.norm(face_encodings - face_to_compare, axis=1) if __name__ == "__main__": cascade_path = './model/haarcascade_frontalface_alt2.xml' cascade = cv2.CascadeClassifier(cascade_path) image_size = 160 model = InceptionResNetV1() # model.summary() model_path = './model/facenet_keras.h5' model.load_weights(model_path) img1 = get_face_img(cascade,r"img/Larry_Page_0000.jpg",10) img2 = get_face_img(cascade,r"img/Larry_Page_0001.jpg",10) img3 = get_face_img(cascade,r"img/Mark_Zuckerberg_0000.jpg",10) print(face_distance(calc_128_vec(model,img1),calc_128_vec(model,img2))) print(face_distance(calc_128_vec(model,img2),calc_128_vec(model,img3)))
实现效果为:
[0.6534328]
[1.3536944]
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
当使用桌面应用程序的时候,有没有那么一瞬间,想学习一下桌面应用程序开发?下面这篇文章主要给大家介绍了关于Python使用pywebview开发桌面应用的相关资料,需要的朋友可以参考下
这篇文章主要为大家详细介绍了Python实现FIFO(先进先出)缓存置换算法,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
这篇文章主要介绍了Python利用numpy实现三层神经网络的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
这篇文章主要介绍了python中opencv 直方图处理,直方图从图像内部灰度级的角度对图像进行表述,直方图是图像内灰度值的统计特性与图像灰度值之间的函数,直方图统计图像内各个灰度级出现的次数,更多相关内容需要的小伙伴可以参考一下
Python内置函数-type()函数。type() 函数如果你只有第一个参数则返回对象的类型,三个参数返回新的类型对象。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008