GRU是什么,在Keras中如何实现GRU
Admin 2022-09-17 群英技术资讯 600 次浏览
GRU是LSTM的一个变种。
传承了LSTM的门结构,但是将LSTM的三个门转化成两个门,分别是更新门和重置门。
下图是每个GRU单元的结构。
在n时刻,每个GRU单元的输入有两个:
输出有一个:
当前时刻GRU输出值ht;
GRU含有两个门结构,分别是:
更新门zt和重置门rt:
更新门用于控制前一时刻的状态信息被代入到当前状态的程度,更新门的值越大说明前一时刻的状态信息带入越少,这一时刻的状态信息带入越多。
重置门用于控制忽略前一时刻的状态信息的程度,重置门的值越小说明忽略得越多。
更新门在图中的标号为zt,需要结合ht-1和Xt来决定上一时刻的输出ht-1有多少得到保留,更新门的值越大说明前一时刻的状态信息保留越少,这一时刻的状态信息保留越多。
结合公式我们可以知道:
zt由ht-1和Xt来决定。
当更新门zt的值较大的时候,上一时刻的输出ht-1保留较少,而这一时刻的状态信息保留较多。
重置门在图中的标号为rt,需要结合ht-1和Xt来控制忽略前一时刻的状态信息的程度,重置门的值越小说明忽略得越多。
结合公式我们可以知道:
rt由ht-1和Xt来决定。
当重置门rt的值较小的时候,上一时刻的输出ht-1保留较少,说明忽略得越多。
所以所有的门总参数量为:
GRU一般需要输入两个参数。
一个是unit、一个是input_shape。
LSTM(CELL_SIZE, input_shape = (TIME_STEPS,INPUT_SIZE))
unit用于指定神经元的数量。
input_shape用于指定输入的shape,分别指定TIME_STEPS和INPUT_SIZE。
import numpy as np from keras.models import Sequential from keras.layers import Input,Activation,Dense from keras.models import Model from keras.datasets import mnist from keras.layers.recurrent import GRU from keras.utils import np_utils from keras.optimizers import Adam TIME_STEPS = 28 INPUT_SIZE = 28 BATCH_SIZE = 50 index_start = 0 OUTPUT_SIZE = 10 CELL_SIZE = 75 LR = 1e-3 (X_train,Y_train),(X_test,Y_test) = mnist.load_data() X_train = X_train.reshape(-1,28,28)/255 X_test = X_test.reshape(-1,28,28)/255 Y_train = np_utils.to_categorical(Y_train,num_classes= 10) Y_test = np_utils.to_categorical(Y_test,num_classes= 10) inputs = Input(shape=[TIME_STEPS,INPUT_SIZE]) x = GRU(CELL_SIZE, input_shape = (TIME_STEPS,INPUT_SIZE))(inputs) x = Dense(OUTPUT_SIZE)(x) x = Activation("softmax")(x) model = Model(inputs,x) adam = Adam(LR) model.summary() model.compile(loss = 'categorical_crossentropy',optimizer = adam,metrics = ['accuracy']) for i in range(50000): X_batch = X_train[index_start:index_start + BATCH_SIZE,:,:] Y_batch = Y_train[index_start:index_start + BATCH_SIZE,:] index_start += BATCH_SIZE cost = model.train_on_batch(X_batch,Y_batch) if index_start >= X_train.shape[0]: index_start = 0 if i%100 == 0: cost,accuracy = model.evaluate(X_test,Y_test,batch_size=50) print("accuracy:",accuracy)
实现效果:
10000/10000 [==============================] - 2s 231us/step accuracy: 0.16749999986961484 10000/10000 [==============================] - 2s 206us/step accuracy: 0.6134000015258789 10000/10000 [==============================] - 2s 214us/step accuracy: 0.7058000019192696 10000/10000 [==============================] - 2s 209us/step accuracy: 0.797899999320507
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
对于新手来说,Python中逻辑回归是比较难理解的内容,对此本文通过逻辑回归的相关题目来帮助大家理解Python逻辑回归,下文有详细的介绍,供大家参考。接下来就跟随小编一起来看看吧。
本文主要介绍了Python使用apscheduler模块设置定时任务的实现,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
本篇文章给大家带来了关于Python的相关知识,其中主要整理了解析参数的三种方法相关问题,第一个选项是使用 argparse,它是一个流行的 Python 模块,专门用于命令行解析;另一种方法是读取 JSON 文件,我们可以在其中放置所有超参数;第三种也是鲜为人知的方法是使用 YAML 文件,下面一起来看一下,希望对大家有帮助。
Vim 插件是一个 .vim 的脚本文件,定义了函数、映射、语法规则和命令,可用于操作窗口、缓冲以及行。一般一个插件包含了命令定义和事件钩子。当使用 Python 编写 vim 插件时,函数外面是使用 VimL 编写,尽管 VimL 学起来很快,但 Python 更加灵活
range()方法是Python中常用的方法, 但是在Python2和Python3中使用方法不同,下面看下它们的不同使用方法。range方法详解range(start, st
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008