MobileNetV3是什么及其网络结构如何理解
Admin 2022-09-17 群英技术资讯 969 次浏览
为了防止某位我的粉丝寒假没有办法正常工作,我赶紧看了看MobilenetV3
最新的MobileNetV3的被写在了论文《Searching for MobileNetV3》中。
它是mobilnet的最新版,据说效果还是很好的。
作为一种轻量级网络,它的参数量还是一如既往的小。
它综合了以下四个特点:
1、MobileNetV1的深度可分离卷积(depthwise separable convolutions)。
2、MobileNetV2的具有线性瓶颈的逆残差结构(the inverted residual with linear bottleneck)。
3、轻量级的注意力模型。
4、利用h-swish代替swish函数。
代码下载
如何看懂这个表呢?我们从每一列出发:
第一列Input代表mobilenetV3每个特征层的shape变化;
第二列Operator代表每次特征层即将经历的block结构,我们可以看到在MobileNetV3中,特征提取经过了许多的bneck结构;
第三、四列分别代表了bneck内逆残差结构上升后的通道数、输入到bneck时特征层的通道数。
第五列SE代表了是否在这一层引入注意力机制。
第六列NL代表了激活函数的种类,HS代表h-swish,RE代表RELU。
第七列s代表了每一次block结构所用的步长。
bneck结构如下图所示:
它综合了以下四个特点:
a、MobileNetV2的具有线性瓶颈的逆残差结构(the inverted residual with linear bottleneck)。
即先利用1x1卷积进行升维度,再进行下面的操作,并具有残差边。
b、MobileNetV1的深度可分离卷积(depthwise separable convolutions)。
在输入1x1卷积进行升维度后,进行3x3深度可分离卷积。
c、轻量级的注意力模型。
这个注意力机制的作用方式是调整每个通道的权重。
d、利用h-swish代替swish函数。
在结构中使用了h-swishj激活函数,代替swish函数,减少运算量,提高性能。
由于keras代码没有预训练权重,所以只是把网络结构po出来。
from keras.layers import Conv2D, DepthwiseConv2D, Dense, GlobalAveragePooling2D,Input from keras.layers import Activation, BatchNormalization, Add, Multiply, Reshape from keras.models import Model from keras import backend as K alpha = 1 def relu6(x): # relu函数 return K.relu(x, max_value=6.0) def hard_swish(x): # 利用relu函数乘上x模拟sigmoid return x * K.relu(x + 3.0, max_value=6.0) / 6.0 def return_activation(x, nl): # 用于判断使用哪个激活函数 if nl == 'HS': x = Activation(hard_swish)(x) if nl == 'RE': x = Activation(relu6)(x) return x def conv_block(inputs, filters, kernel, strides, nl): # 一个卷积单元,也就是conv2d + batchnormalization + activation channel_axis = 1 if K.image_data_format() == 'channels_first' else -1 x = Conv2D(filters, kernel, padding='same', strides=strides)(inputs) x = BatchNormalization(axis=channel_axis)(x) return return_activation(x, nl) def squeeze(inputs): # 注意力机制单元 input_channels = int(inputs.shape[-1]) x = GlobalAveragePooling2D()(inputs) x = Dense(int(input_channels/4))(x) x = Activation(relu6)(x) x = Dense(input_channels)(x) x = Activation(hard_swish)(x) x = Reshape((1, 1, input_channels))(x) x = Multiply()([inputs, x]) return x def bottleneck(inputs, filters, kernel, up_dim, stride, sq, nl): channel_axis = 1 if K.image_data_format() == 'channels_first' else -1 input_shape = K.int_shape(inputs) tchannel = int(up_dim) cchannel = int(alpha * filters) r = stride == 1 and input_shape[3] == filters # 1x1卷积调整通道数,通道数上升 x = conv_block(inputs, tchannel, (1, 1), (1, 1), nl) # 进行3x3深度可分离卷积 x = DepthwiseConv2D(kernel, strides=(stride, stride), depth_multiplier=1, padding='same')(x) x = BatchNormalization(axis=channel_axis)(x) x = return_activation(x, nl) # 引入注意力机制 if sq: x = squeeze(x) # 下降通道数 x = Conv2D(cchannel, (1, 1), strides=(1, 1), padding='same')(x) x = BatchNormalization(axis=channel_axis)(x) if r: x = Add()([x, inputs]) return x def MobileNetv3_large(shape = (224,224,3),n_class = 1000): inputs = Input(shape) # 224,224,3 -> 112,112,16 x = conv_block(inputs, 16, (3, 3), strides=(2, 2), nl='HS') x = bottleneck(x, 16, (3, 3), up_dim=16, stride=1, sq=False, nl='RE') # 112,112,16 -> 56,56,24 x = bottleneck(x, 24, (3, 3), up_dim=64, stride=2, sq=False, nl='RE') x = bottleneck(x, 24, (3, 3), up_dim=72, stride=1, sq=False, nl='RE') # 56,56,24 -> 28,28,40 x = bottleneck(x, 40, (5, 5), up_dim=72, stride=2, sq=True, nl='RE') x = bottleneck(x, 40, (5, 5), up_dim=120, stride=1, sq=True, nl='RE') x = bottleneck(x, 40, (5, 5), up_dim=120, stride=1, sq=True, nl='RE') # 28,28,40 -> 14,14,80 x = bottleneck(x, 80, (3, 3), up_dim=240, stride=2, sq=False, nl='HS') x = bottleneck(x, 80, (3, 3), up_dim=200, stride=1, sq=False, nl='HS') x = bottleneck(x, 80, (3, 3), up_dim=184, stride=1, sq=False, nl='HS') x = bottleneck(x, 80, (3, 3), up_dim=184, stride=1, sq=False, nl='HS') # 14,14,80 -> 14,14,112 x = bottleneck(x, 112, (3, 3), up_dim=480, stride=1, sq=True, nl='HS') x = bottleneck(x, 112, (3, 3), up_dim=672, stride=1, sq=True, nl='HS') # 14,14,112 -> 7,7,160 x = bottleneck(x, 160, (5, 5), up_dim=672, stride=2, sq=True, nl='HS') x = bottleneck(x, 160, (5, 5), up_dim=960, stride=1, sq=True, nl='HS') x = bottleneck(x, 160, (5, 5), up_dim=960, stride=1, sq=True, nl='HS') # 7,7,160 -> 7,7,960 x = conv_block(x, 960, (1, 1), strides=(1, 1), nl='HS') x = GlobalAveragePooling2D()(x) x = Reshape((1, 1, 960))(x) x = Conv2D(1280, (1, 1), padding='same')(x) x = return_activation(x, 'HS') x = Conv2D(n_class, (1, 1), padding='same', activation='softmax')(x) x = Reshape((n_class,))(x) model = Model(inputs, x) return model if __name__ == "__main__": model = MobileNetv3_large() model.summary()
关于“MobileNetV3是什么及其网络结构如何理解”的内容今天就到这,感谢各位的阅读,大家可以动手实际看看,对大家加深理解更有帮助哦。如果想了解更多相关内容的文章,关注我们,群英网络小编每天都会为大家更新不同的知识。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系
对于扫雷游戏相信大家应该都不陌生吧,扫雷游戏可以说是很经典的游戏了,之前我们了解了使用介绍实现扫雷游戏,这篇文章我们就来尝试使用python做一个扫雷游戏,感兴趣的朋友就接着往下看吧。
这篇文章主要介绍了python判定文件目录是否存在及创建多层目录,文章通过os模块、try语句、pathlib模块善终模块展开详细的内容,感兴趣的朋友可以参考一下
pytorch 用于训练,TensorRT用于推理是很多AI应用开发的标配。大家往往更加熟悉 pytorch 的算子,而不太熟悉TensorRT的算子。本文介绍了Pytorch中常用乘法的TensorRT实现,感兴趣的可以了解一下
这篇文章主要为大家详细介绍了使用python实现简单去水印功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008