Python tensorflow函数tf.get_variable有什么用
Admin 2022-09-16 群英技术资讯 498 次浏览
该函数共有十一个参数,常用的有:
名称 name
变量规格 shape
变量类型 dtype
变量初始化方式 initializer
所属于的集合 collections
def get_variable(name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partitioner=None, validate_shape=True, use_resource=None, custom_getter=None):
该函数的作用是创建新的tensorflow变量
常见的initializer有:
常量初始化器 tf.constant_initializer
正太分布初始化器 tf.random_normal_initializer
截断正态分布初始化器 tf.truncated_normal_initializer
均匀分布初始化器 tf.random_uniform_initializer
该例子将分别讲述常见的几种initializer的使用方法
import tensorflow as tf; import numpy as np; #常量初始化器 v1_cons = tf.get_variable('v1_cons', shape=[1,4], initializer=tf.constant_initializer()) v2_cons = tf.get_variable('v2_cons', shape=[1,4], initializer=tf.constant_initializer(9)) #正太分布初始化器 v1_nor = tf.get_variable('v1_nor', shape=[1,4], initializer=tf.random_normal_initializer()) v2_nor = tf.get_variable('v2_nor', shape=[1,4], initializer=tf.random_normal_initializer(mean=0, stddev=5, seed=0))#均值、方差、种子值 #截断正态分布初始化器 v1_trun = tf.get_variable('v1_trun', shape=[1,4], initializer=tf.truncated_normal_initializer()) v2_trun = tf.get_variable('v2_trun', shape=[1,4], initializer=tf.truncated_normal_initializer(mean=0, stddev=5, seed=0))#均值、方差、种子值 #均匀分布初始化器 v1_uni = tf.get_variable('v1_uni', shape=[1,4], initializer=tf.random_uniform_initializer()) v2_uni = tf.get_variable('v2_uni', shape=[1,4], initializer=tf.random_uniform_initializer(maxval=-1., minval=1., seed=0))#最大值、最小值、种子值 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print("常量初始化器v1_cons:",sess.run(v1_cons)) print("常量初始化器v2_cons:",sess.run(v2_cons)) print("正太分布初始化器v1_nor:",sess.run(v1_nor)) print("正太分布初始化器v2_nor:",sess.run(v2_nor)) print("截断正态分布初始化器v1_trun:",sess.run(v1_trun)) print("截断正态分布初始化器v2_trun:",sess.run(v2_trun)) print("均匀分布初始化器v1_uni:",sess.run(v1_uni)) print("均匀分布初始化器v2_uni:",sess.run(v2_uni))
其输出为:
常量初始化器v1_cons: [[0. 0. 0. 0.]] 常量初始化器v2_cons: [[9. 9. 9. 9.]] 正太分布初始化器v1_nor: [[-0.7286455 -0.03095582 1.6400269 -0.90134907]] 正太分布初始化器v2_nor: [[-1.9957879 10.522196 0.8553612 2.7325907]] 截断正态分布初始化器v1_trun: [[-0.52284956 -0.77045 1.9507815 0.96106136]] 截断正态分布初始化器v2_trun: [[-1.9957879 0.8553612 2.7325907 2.1127698]] 均匀分布初始化器v1_uni: [[0.5369104 0.05912018 0.1587832 0.2859378 ]] 均匀分布初始化器v2_uni: [[ 0.79827476 -0.9403336 -0.69752836 0.9034374 ]]
到此,关于“Python tensorflow函数tf.get_variable有什么用”的学习就结束了,希望能够解决大家的疑惑,另外大家动手实践也很重要,对大家加深理解和学习很有帮助。如果想要学习更多的相关知识,欢迎关注群英网络资讯站,小编每天都会给大家分享实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了Python中模块(Module)和包(Package)的区别详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
正则表达式是一个特殊的字符序列,可以帮助您使用模式中保留的专门语法来匹配或查找其他字符串或字符串集。 正则表达式在UNIX世界中被广泛使用。
验证码作为一种自然人的机器人的判别工具,被广泛的用于各种防止程序做自动化的场景中。传统的字符型验证安全性已经名存实亡的情况下,各种新型的验证码如雨后春笋般涌现,今天给大家分享一篇Python实现滑块验证码
python下如何往数据库批量插入数据?方法是什么?假如我们想要往数据库表中的插入的数据有几百上千条,那么一条条插入,则调用sql语句查询插入就需要执行几百上千,这样花费的时间就非常的长。因此我们可以使用cursor.executemany(sql,args)来实现批量插入数据,那么具体怎样做呢?接着往下看。
在日常工作中,PPT制作是常见的工作。这篇文章主要为大家详细介绍了如何利用Python自动生成PPT,文中的示例代码讲解详细,感兴趣的可以了解一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008