Python拟合曲线如何理解,实现方法是什么
Admin 2022-09-16 群英技术资讯 283 次浏览
今天我们来学习关于“Python拟合曲线如何理解,实现方法是什么”的内容,下文有详解方法和实例,内容详细,逻辑清晰,有需要的朋友可以参考,希望大家阅读完这篇文章后能有所收获,那么下面就一起来了解一下吧。
曲线拟合的应用在生活中随处可见,不知道大家是否还记得物理实验中的自由落体运动中下降高度与时间关系之间的探究,在初速度为0的情况下,我们想要探究下降高度与时间的关系。
我们当时采用的方法是通过设置不同的下降时间来记录下降的高度,测量记录多组数据之后,再利用二维坐标系将记录的点绘制到坐标系当中去,然后保证绘制的曲线到这些点的距离之和最小,最终得到的曲线就是h与t的关系。
绘制出h和t的关系之后,我就可以知道任意取值t在初速度为0的情况下,下降高度h对应的值。除此之外,曲线拟合的应用还有很多例如房价预测、经济预测、股价预测等。
不知道,大家有没有思考过,为什么我们可以通过测量值来绘制出t和h的关系曲线呢?这里面用到的逻辑究竟是什么呢?其实关于曲线的拟合通常有两种解决方案:
下面我们主要探讨如何利用方法1来实现曲线的拟合
曲线拟合还可以分为两种情况,第一种就是没有约束的曲线拟合,第二种就是带有约束条件的曲线拟合。scipy中提供了curve_fit函数使用非线性的最小二乘法用来拟合没有约束条件的曲线,提供了least_squares函数用来拟合带有约束条件的曲线。
有时候在求解曲线参数的时候,会对参数的边界做出一些限制,下面就展示了在对参数的边界做出限制的情况下如何来求解的问题。我们使用jac矩阵结合最小二乘法来计算曲线的参数
import numpy as np from scipy.optimize import least_squares import matplotlib.pyplot as plt def model(x,u): """定义拟合的曲线 :param x:输入值自变量 :param u:输入值函数的参数 :return:返回值因变量 """ return x[0] * (u ** 2 + x[1] * u) / (u ** 2 + x[2] * u + x[3]) def fun(x,u,y): return model(x,u) - y def jac(x,u,y): J = np.empty((u.size,x.size)) den = u ** 2 + x[2] * u + x[3] num = u ** 2 + x[1] * u J[:,0] = num / den J[:,1] = x[0] * u / den J[:,2] = -x[0] * num * u / den ** 2 J[:,3] = -x[0] * num / den ** 2 return J #输入值自变量 u = np.array([4.0, 2.0, 1.0, 5.0e-1, 2.5e-1, 1.67e-1, 1.25e-1, 1.0e-1, 8.33e-2, 7.14e-2, 6.25e-2]) #输入值因变量 y = np.array([1.957e-1, 1.947e-1, 1.735e-1, 1.6e-1, 8.44e-2, 6.27e-2, 4.56e-2, 3.42e-2, 3.23e-2, 2.35e-2, 2.46e-2]) #函数的参数 x0 = np.array([2.5, 3.9, 4.15, 3.9]) #利用jac矩阵结合最小二乘法来计算曲线的参数,设置参数的取值在(0,100)之间 res = least_squares(fun, x0, jac=jac, bounds=(0, 100), args=(u, y), verbose=1) #需要预测值得输入值 u_test = np.linspace(0, 5) #利用计算的曲线参数来计算预测值 y_test = model(res.x, u_test) plt.plot(u, y, 'o', markersize=4, label='data') plt.plot(u_test, y_test, label='fitted model') plt.xlabel("u") plt.ylabel("y") plt.legend(loc='lower right') plt.show()
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了pytorch多次预测结果不一致的解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
这篇文章主要介绍了使用python获取cpu每秒的使用率,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
猜拳游戏:跟电脑玩石头,剪刀,布游戏。赢了就提示:赢了,你好厉害哦,下一把我一定要赢你。输了就提示:输了,不要走,洗洗手接着来,决战到天亮
这篇文章主要为大家介绍了python人工智能tensorflow函数tensorboard使用方法,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
这篇文章主要介绍了python使用Matplotlib绘制多种常见图形,文章围绕主题展开详细的用Matplotlib绘制内容,需要的小伙伴可以参考一下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008