如何理解python神经网络tf.train.batch函数的使用
Admin 2022-09-16 群英技术资讯 276 次浏览
tf.train.batch( tensors, batch_size, num_threads=1, capacity=32, enqueue_many=False, shapes=None, dynamic_pad=False, allow_smaller_final_batch=False, shared_name=None, name=None )
其中:
1、tensors:利用slice_input_producer获得的数据组合。
2、batch_size:设置每次从队列中获取出队数据的数量。
3、num_threads:用来控制线程的数量,如果其值不唯一,由于线程执行的特性,数据获取可能变成乱序。
4、capacity:一个整数,用来设置队列中元素的最大数量
5、allow_samller_final_batch:当其为True时,如果队列中的样本数量小于batch_size,出队的数量会以最终遗留下来的样本进行出队;当其为False时,小于batch_size的样本不会做出队处理。
6、name:名字
import pandas as pd import numpy as np import tensorflow as tf # 生成数据 def generate_data(): num = 18 label = np.arange(num) return label # 获取数据 def get_batch_data(): label = generate_data() input_queue = tf.train.slice_input_producer([label], shuffle=False,num_epochs=2) label_batch = tf.train.batch(input_queue, batch_size=5, num_threads=1, capacity=64,allow_smaller_final_batch=True) return label_batch # 数据组 label = get_batch_data() sess = tf.Session() # 初始化变量 sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) # 初始化batch训练的参数 coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess,coord) try: while not coord.should_stop(): # 自动获取下一组数据 l = sess.run(label) print(l) except tf.errors.OutOfRangeError: print('Done training') finally: coord.request_stop() coord.join(threads) sess.close()
运行结果为:
[0 1 2 3 4]
[5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 0 1]
[2 3 4 5 6]
[ 7 8 9 10 11]
[12 13 14 15 16]
[17]
Done training
相比allow_samller_final_batch=True,输出结果少了[17]
import pandas as pd import numpy as np import tensorflow as tf # 生成数据 def generate_data(): num = 18 label = np.arange(num) return label # 获取数据 def get_batch_data(): label = generate_data() input_queue = tf.train.slice_input_producer([label], shuffle=False,num_epochs=2) label_batch = tf.train.batch(input_queue, batch_size=5, num_threads=1, capacity=64,allow_smaller_final_batch=False) return label_batch # 数据组 label = get_batch_data() sess = tf.Session() # 初始化变量 sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) # 初始化batch训练的参数 coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess,coord) try: while not coord.should_stop(): # 自动获取下一组数据 l = sess.run(label) print(l) except tf.errors.OutOfRangeError: print('Done training') finally: coord.request_stop() coord.join(threads) sess.close()
运行结果为:
[0 1 2 3 4]
[5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 0 1]
[2 3 4 5 6]
[ 7 8 9 10 11]
[12 13 14 15 16]
Done training
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了python出现RuntimeError错误问题及解决方案,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
这篇文章主要为大家介绍了python日期时间处理,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
这篇文章介绍了Python使用StringIO和BytesIO读写内存数据的方法,文中通过示例代码介绍的非常详细。对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
这篇文章主要介绍了python 一维、二维列表的初始化,本文通过两种方式给大家详细讲解,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧
这篇文章主要介绍了Python实现 MK检验,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008