python目标检测IOU的特点是什么,如何计算IOU

Admin 2022-09-16 群英技术资讯 292 次浏览

今天就跟大家聊聊有关“python目标检测IOU的特点是什么,如何计算IOU”的内容,可能很多人都不太了解,为了让大家认识和更进一步的了解,小编给大家总结了以下内容,希望这篇“python目标检测IOU的特点是什么,如何计算IOU”文章能对大家有帮助。


学习前言

神经网络的应用还有许多,目标检测就是其中之一,目标检测中有一个很重要的概念便是IOU

什么是IOU

IOU是一种评价目标检测器的一种指标。

下图是一个示例:图中绿色框为实际框(好像不是很绿……),红色框为预测框,当我们需要判断两个框之间的关系时,需要用什么指标呢?

此时便需要用到IOU。

计算IOU的公式为:

可以看到IOU是一个比值,即交并比。

在分子部分,值为预测框和实际框之间的重叠区域;

在分母部分,值为预测框和实际框所占有的总区域。

交区域和并区域的比值,就是IOU。

IOU的特点

与分类任务不同,我们的预测框的坐标需要去匹配实际框的坐标,而坐标的完全匹配是不现实的。因此,我们需要定义一个评估指标,奖励那些与匹配框匹配较好的预测框。

全部代码

本文将画出两个矩形框,并计算他们的IOU。

效果如下:

import cv2
import numpy as np
def CountIOU(RecA, RecB):
    xA = max(RecA[0], RecB[0])
    yA = max(RecA[1], RecB[1])
    xB = min(RecA[2], RecB[2])
    yB = min(RecA[3], RecB[3])
    # 计算交集部分面积
    interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
    # 计算预测值和真实值的面积
    RecA_Area = (RecA[2] - RecA[0] + 1) * (RecA[3] - RecA[1] + 1)
    RecB_Area = (RecB[2] - RecB[0] + 1) * (RecB[3] - RecB[1] + 1)
    # 计算IOU
    iou = interArea / float(RecA_Area + RecB_Area - interArea)
    return iou
img = np.zeros((512,512,3), np.uint8)   
img.fill(255)
RecA = [50,50,300,300]
RecB = [60,60,320,320]
cv2.rectangle(img, (RecA[0],RecA[1]), (RecA[2],RecA[3]), (0, 255, 0), 5)
cv2.rectangle(img, (RecB[0],RecB[1]), (RecB[2],RecB[3]), (255, 0, 0), 5)
IOU = CountIOU(RecA,RecB)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,"IOU = %.2f"%IOU,(130, 190),font,0.8,(0,0,0),2)
cv2.imshow("image",img)
cv2.waitKey()
cv2.destroyAllWindows()

以上就是关于“python目标检测IOU的特点是什么,如何计算IOU”的介绍了,感谢各位的阅读,如果大家想要了解更多相关的内容,欢迎关注群英网络,小编每天都会为大家更新不同的知识。
群英智防CDN,智能加速解决方案
标签: python

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服