python中用pandas库怎样创建和读写csv文件

Admin 2022-09-13 群英技术资讯 370 次浏览

今天小编跟大家讲解下有关“python中用pandas库怎样创建和读写csv文件”的内容 ,相信小伙伴们对这个话题应该有所关注吧,小编也收集到了相关资料,希望小伙伴们看了有所帮助。
   

简单展示如何利用python中的pandas库创建、读取、修改CSV数据文件

1 写入CSV文件

import numpy as np
import pandas as pd

# -----create an initial numpy array----- #
data = np.zeros((8,4))
# print(data.dtype)
# print(type(data))
# print(data.shape)

# -----from array to dataframe----- #
df = pd.DataFrame(data)
# print(type(df))
# print(df.shape)
# print(df)

# -----edit columns and index----- #
df.columns = ['A', 'B', 'C', 'D']
df.index = range(data.shape[0])
df.info()

# -----save dataframe as csv----- #
csv_save_path='./data_.csv'
df.to_csv(csv_save_path, sep=',', index=False, header=True)

# -----check----- #
df = pd.read_csv(csv_save_path)
print('-' * 25)
print(df)

输出如下:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8 entries, 0 to 7
Data columns (total 4 columns):
A    8 non-null float64
B    8 non-null float64
C    8 non-null float64
D    8 non-null float64
dtypes: float64(4)
memory usage: 336.0 bytes
-------------------------
     A    B    C    D
0  0.0  0.0  0.0  0.0
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  0.0  0.0  0.0  0.0
4  0.0  0.0  0.0  0.0
5  0.0  0.0  0.0  0.0
6  0.0  0.0  0.0  0.0
7  0.0  0.0  0.0  0.0

2 读取CSV文件

import pandas as pd
import numpy as np

csv_path = './data_.csv'

# -----saved as dataframe----- #
data = pd.read_csv(csv_path)
# ---if index is given in csv file, you can use next line of code to replace the previous one---
# data = pd.read_csv(csv_path, index_col=0)
print(type(data))
print(data)
print(data.shape)

# -----saved as array----- #
data_ = np.array(data)
# data_ = data.values
print(type(data_))
print(data_)
print(data_.shape)

输出如下:

<class 'pandas.core.frame.DataFrame'>
     A    B    C    D
0  0.0  0.0  0.0  0.0
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  0.0  0.0  0.0  0.0
4  0.0  0.0  0.0  0.0
5  0.0  0.0  0.0  0.0
6  0.0  0.0  0.0  0.0
7  0.0  0.0  0.0  0.0
(8, 4)
<class 'numpy.ndarray'>
[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
(8, 4)

3 修改CSV文件

import pandas as pd
import numpy as np

csv_path = './data_.csv'
df = pd.read_csv(csv_path)

# -----edit columns and index----- #
df.columns = ['X1', 'X2', 'X3', 'Y']
df.index = range(df.shape[0])
# df.index = [i+1 for i in range(df.shape[0])]

# -----columns operations----- #
Y = df['Y']
df['X4'] = [4 for i in range(df.shape[0])]        # add
df['X5'] = [5 for i in range(df.shape[0])]
# print(df)
df.drop(columns='Y', inplace=True)                # delete
# print(df)
df['X1'] = [i+1 for i in range(df.shape[0])]      # correct --(1)
# df.iloc[:df.shape[0], 0] = [i+1 for i in range(df.shape[0])]
                                                  # correct --(2)
# print(df)
df['Y'] = Y_temp  
# print(df)

# -----rows operations----- #
df.loc[df.shape[0]] = [i+2 for i in range(6)]     # add
# print(df)
df.drop(index=4, inplace=True)                    # delete
# print(df)
df.loc[0] = [i+1 for i in range(df.shape[1])]     # correct
# print(df)

# -----edit index again after rows operations!!!----- #
df.index = range(df.shape[0])

# -----save dataframe as csv----- #
csv_save_path='./data_copy.csv'
df.to_csv(csv_save_path, sep=',', index=False, header=True)

print(df)

输出如下:

    X1   X2   X3  X4  X5    Y
0  1.0  2.0  3.0   4   5  6.0
1  2.0  0.0  0.0   4   5  0.0
2  3.0  0.0  0.0   4   5  0.0
3  4.0  0.0  0.0   4   5  0.0
4  6.0  0.0  0.0   4   5  0.0
5  7.0  0.0  0.0   4   5  0.0
6  8.0  0.0  0.0   4   5  0.0
7  2.0  3.0  4.0   5   6  7.0

总结


以上就是关于“python中用pandas库怎样创建和读写csv文件”的相关知识,感谢各位的阅读,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注群英网络,小编每天都会为大家更新不同的知识。
群英智防CDN,智能加速解决方案
标签: python

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服