PyTorch深度学习LSTM参数有哪些,怎样理解

Admin 2022-09-09 群英技术资讯 364 次浏览

在这篇文章中我们来了解一下“PyTorch深度学习LSTM参数有哪些,怎样理解”,一些朋友可能会遇到这方面的问题,对此在下文小编向大家来讲解一下,内容详细,易于理解,希望大家阅读完这篇能有收获哦,有需要的朋友就往下看吧!


LSTM介绍

关于LSTM的具体原理,可以参考:

https://www.jb51.net/article/178582.htm

https://www.jb51.net/article/178423.htm

LSTM参数

关于nn.LSTM的参数,官方文档给出的解释为:

总共有七个参数,其中只有前三个是必须的。由于大家普遍使用PyTorch的DataLoader来形成批量数据,因此batch_first也比较重要。LSTM的两个常见的应用场景为文本处理和时序预测,因此下面对每个参数我都会从这两个方面来进行具体解释。

  • input_size:在文本处理中,由于一个单词没法参与运算,因此我们得通过Word2Vec来对单词进行嵌入表示,将每一个单词表示成一个向量,此时input_size=embedding_size。
  • 比如每个句子中有五个单词,每个单词用一个100维向量来表示,那么这里input_size=100;
  • 在时间序列预测中,比如需要预测负荷,每一个负荷都是一个单独的值,都可以直接参与运算,因此并不需要将每一个负荷表示成一个向量,此时input_size=1。
  • 但如果我们使用多变量进行预测,比如我们利用前24小时每一时刻的[负荷、风速、温度、压强、湿度、天气、节假日信息]来预测下一时刻的负荷,那么此时input_size=7。
  • hidden_size:隐藏层节点个数。可以随意设置。
  • num_layers:层数。nn.LSTMCell与nn.LSTM相比,num_layers默认为1。
  • batch_first:默认为False,意义见后文。

Inputs

关于LSTM的输入,官方文档给出的定义为:

可以看到,输入由两部分组成:input、(初始的隐状态h_0,初始的单元状态c_0)

其中input:

input(seq_len, batch_size, input_size)
  • seq_len:在文本处理中,如果一个句子有7个单词,则seq_len=7;在时间序列预测中,假设我们用前24个小时的负荷来预测下一时刻负荷,则seq_len=24。
  • batch_size:一次性输入LSTM中的样本个数。在文本处理中,可以一次性输入很多个句子;在时间序列预测中,也可以一次性输入很多条数据。
  • input_size:见前文。

(h_0, c_0):

h_0(num_directions * num_layers, batch_size, hidden_size)
c_0(num_directions * num_layers, batch_size, hidden_size)

h_0和c_0的shape一致。

  • num_directions:如果是双向LSTM,则num_directions=2;否则num_directions=1。
  • num_layers:见前文。
  • batch_size:见前文。
  • hidden_size:见前文。

Outputs

关于LSTM的输出,官方文档给出的定义为:

可以看到,输出也由两部分组成:otput、(隐状态h_n,单元状态c_n)

其中output的shape为:

output(seq_len, batch_size, num_directions * hidden_size)

h_n和c_n的shape保持不变,参数解释见前文。

batch_first

如果在初始化LSTM时令batch_first=True,那么input和output的shape将由:

input(seq_len, batch_size, input_size)
output(seq_len, batch_size, num_directions * hidden_size)

变为:

input(batch_size, seq_len, input_size)
output(batch_size, seq_len, num_directions * hidden_size)

即batch_size提前。

案例

简单搭建一个LSTM如下所示:

class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):
        super().__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.output_size = output_size
        self.num_directions = 1 # 单向LSTM
        self.batch_size = batch_size
        self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)
        self.linear = nn.Linear(self.hidden_size, self.output_size)
    def forward(self, input_seq):
        h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        seq_len = input_seq.shape[1] # (5, 30)
        # input(batch_size, seq_len, input_size)
        input_seq = input_seq.view(self.batch_size, seq_len, 1)  # (5, 30, 1)
        # output(batch_size, seq_len, num_directions * hidden_size)
        output, _ = self.lstm(input_seq, (h_0, c_0)) # output(5, 30, 64)
        output = output.contiguous().view(self.batch_size * seq_len, self.hidden_size) # (5 * 30, 64)
        pred = self.linear(output) # pred(150, 1)
        pred = pred.view(self.batch_size, seq_len, -1) # (5, 30, 1)
        pred = pred[:, -1, :]  # (5, 1)
        return pred

其中定义模型的代码为:

self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)
self.linear = nn.Linear(self.hidden_size, self.output_size)

我们加上具体的数字:

self.lstm = nn.LSTM(self.input_size=1, self.hidden_size=64, self.num_layers=5, batch_first=True)
self.linear = nn.Linear(self.hidden_size=64, self.output_size=1)

再看前向传播:

def forward(self, input_seq):
    h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
    c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
    seq_len = input_seq.shape[1]  # (5, 30)
    # input(batch_size, seq_len, input_size)
    input_seq = input_seq.view(self.batch_size, seq_len, 1)  # (5, 30, 1)
    # output(batch_size, seq_len, num_directions * hidden_size)
    output, _ = self.lstm(input_seq, (h_0, c_0))  # output(5, 30, 64)
    output = output.contiguous().view(self.batch_size * seq_len, self.hidden_size)  # (5 * 30, 64)
    pred = self.linear(output) # (150, 1)
    pred = pred.view(self.batch_size, seq_len, -1)  # (5, 30, 1)
    pred = pred[:, -1, :]  # (5, 1)
    return pred

假设用前30个预测下一个,则seq_len=30,batch_size=5,由于设置了batch_first=True,因此,输入到LSTM中的input的shape应该为:

input(batch_size, seq_len, input_size) = input(5, 30, 1)

但实际上,经过DataLoader处理后的input_seq为:

input_seq(batch_size, seq_len) = input_seq(5, 30)

(5, 30)表示一共5条数据,每条数据的维度都为30。为了匹配LSTM的输入,我们需要对input_seq的shape进行变换:

input_seq = input_seq.view(self.batch_size, seq_len, 1)  # (5, 30, 1)

然后将input_seq送入LSTM:

output, _ = self.lstm(input_seq, (h_0, c_0)) # output(5, 30, 64)

根据前文,output的shape为:

output(batch_size, seq_len, num_directions * hidden_size) = output(5, 30, 64)

全连接层的定义为:

self.linear = nn.Linear(self.hidden_size=64, self.output_size=1)

因此,我们需要将output的第二维度变换为64(150, 64):

output = output.contiguous().view(self.batch_size * seq_len, self.hidden_size) # (5 * 30, 64)

然后将output送入全连接层:

pred = self.linear(output) # pred(150, 1)

得到的预测值shape为(150, 1)。我们需要将其进行还原,变成(5, 30, 1):

pred = pred.view(self.batch_size, seq_len, -1) # (5, 30, 1)

在用DataLoader处理了数据后,得到的input_seq和label的shape分别为:

input_seq(batch_size, seq_len) = input_seq(5, 30)label(batch_size, output_size) = label(5, 1)

由于输出是输入右移,我们只需要取pred第二维度(time)中的最后一个数据:

pred = pred[:, -1, :] # (5, 1)

这样,我们就得到了预测值,然后与label求loss,然后再反向更新参数即可。

时间序列预测的一个真实案例请见:PyTorch搭建LSTM实现时间序列预测(负荷预测)


到此这篇关于“PyTorch深度学习LSTM参数有哪些,怎样理解”的文章就介绍到这了,更多相关内容请搜索群英网络以前的文章或继续浏览下面的相关文章,希望大家以后多多支持群英网络!
群英智防CDN,智能加速解决方案
标签: Pytorch

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服