如何用PyTorch搭建LSTM实现多变量多步长时间序列预

Admin 2022-09-09 群英技术资讯 395 次浏览

这篇文章主要讲解了“如何用PyTorch搭建LSTM实现多变量多步长时间序列预”,文中的讲解内容简单、清晰、详细,对大家学习或是工作可能会有一定的帮助,希望大家阅读完这篇文章能有所收获。下面就请大家跟着小编的思路一起来学习一下吧。

I. 前言

在前面的两篇文章PyTorch搭建LSTM实现时间序列预测(负荷预测)和PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)中,我们利用LSTM分别实现了单变量单步长时间序列预测和多变量单步长时间序列预测。

本篇文章主要考虑用PyTorch搭建LSTM实现多变量多步长时间序列预测。

II. 数据处理

数据集为某个地区某段时间内的电力负荷数据,除了负荷以外,还包括温度、湿度等信息。

本文中,我们根据前24个时刻的负荷以及该时刻的环境变量来预测接下来4个时刻的负荷(步长可调)。

def load_data(file_name):
    global MAX, MIN
    df = pd.read_csv(os.path.dirname(os.getcwd()) + '/data/new_data/' + file_name, encoding='gbk')
    columns = df.columns
    df.fillna(df.mean(), inplace=True)
    MAX = np.max(df[columns[1]])
    MIN = np.min(df[columns[1]])
    df[columns[1]] = (df[columns[1]] - MIN) / (MAX - MIN)
    return df
class MyDataset(Dataset):
    def __init__(self, data):
        self.data = data
    def __getitem__(self, item):
        return self.data[item]
    def __len__(self):
        return len(self.data)
def nn_seq(file_name, B, num):
    print('data processing...')
    data = load_data(file_name)
    load = data[data.columns[1]]
    load = load.tolist()
    data = data.values.tolist()
    seq = []
    for i in range(0, len(data) - 24 - num, num):
        train_seq = []
        train_label = []
        for j in range(i, i + 24):
            x = [load[j]]
            for c in range(2, 8):
                x.append(data[j][c])
            train_seq.append(x)
        for j in range(i + 24, i + 24 + num):
            train_label.append(load[j])
        train_seq = torch.FloatTensor(train_seq)
        train_label = torch.FloatTensor(train_label).view(-1)
        seq.append((train_seq, train_label))
    # print(seq[-1])
    Dtr = seq[0:int(len(seq) * 0.7)]
    Dte = seq[int(len(seq) * 0.7):len(seq)]
    train_len = int(len(Dtr) / B) * B
    test_len = int(len(Dte) / B) * B
    Dtr, Dte = Dtr[:train_len], Dte[:test_len]
    train = MyDataset(Dtr)
    test = MyDataset(Dte)
    Dtr = DataLoader(dataset=train, batch_size=B, shuffle=False, num_workers=0)
    Dte = DataLoader(dataset=test, batch_size=B, shuffle=False, num_workers=0)
    return Dtr, Dte

其中num表示需要预测的步长,如num=4表示预测接下来4个时刻的负荷。

任意输出其中一条数据:

(tensor([[0.5830, 1.0000, 0.9091, 0.6957, 0.8333, 0.4884, 0.5122],
        [0.6215, 1.0000, 0.9091, 0.7391, 0.8333, 0.4884, 0.5122],
        [0.5954, 1.0000, 0.9091, 0.7826, 0.8333, 0.4884, 0.5122],
        [0.5391, 1.0000, 0.9091, 0.8261, 0.8333, 0.4884, 0.5122],
        [0.5351, 1.0000, 0.9091, 0.8696, 0.8333, 0.4884, 0.5122],
        [0.5169, 1.0000, 0.9091, 0.9130, 0.8333, 0.4884, 0.5122],
        [0.4694, 1.0000, 0.9091, 0.9565, 0.8333, 0.4884, 0.5122],
        [0.4489, 1.0000, 0.9091, 1.0000, 0.8333, 0.4884, 0.5122],
        [0.4885, 1.0000, 0.9091, 0.0000, 1.0000, 0.3256, 0.3902],
        [0.4612, 1.0000, 0.9091, 0.0435, 1.0000, 0.3256, 0.3902],
        [0.4229, 1.0000, 0.9091, 0.0870, 1.0000, 0.3256, 0.3902],
        [0.4173, 1.0000, 0.9091, 0.1304, 1.0000, 0.3256, 0.3902],
        [0.4503, 1.0000, 0.9091, 0.1739, 1.0000, 0.3256, 0.3902],
        [0.4502, 1.0000, 0.9091, 0.2174, 1.0000, 0.3256, 0.3902],
        [0.5426, 1.0000, 0.9091, 0.2609, 1.0000, 0.3256, 0.3902],
        [0.5579, 1.0000, 0.9091, 0.3043, 1.0000, 0.3256, 0.3902],
        [0.6035, 1.0000, 0.9091, 0.3478, 1.0000, 0.3256, 0.3902],
        [0.6540, 1.0000, 0.9091, 0.3913, 1.0000, 0.3256, 0.3902],
        [0.6181, 1.0000, 0.9091, 0.4348, 1.0000, 0.3256, 0.3902],
        [0.6334, 1.0000, 0.9091, 0.4783, 1.0000, 0.3256, 0.3902],
        [0.6297, 1.0000, 0.9091, 0.5217, 1.0000, 0.3256, 0.3902],
        [0.5610, 1.0000, 0.9091, 0.5652, 1.0000, 0.3256, 0.3902],
        [0.5957, 1.0000, 0.9091, 0.6087, 1.0000, 0.3256, 0.3902],
        [0.6427, 1.0000, 0.9091, 0.6522, 1.0000, 0.3256, 0.3902]]), tensor([0.6360, 0.6996, 0.6889, 0.6434]))

数据格式为(X, Y)。其中X一共24行,表示前24个时刻的负荷值和该时刻的环境变量。Y一共四个值,表示需要预测的四个负荷值。需要注意的是,此时input_size=7,output_size=4。

III. LSTM模型

这里采用了深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中的模型:

class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):
        super().__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.output_size = output_size
        self.num_directions = 1
        self.batch_size = batch_size
        self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)
        self.linear = nn.Linear(self.hidden_size, self.output_size)
    def forward(self, input_seq):
        h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        # print(input_seq.size())
        seq_len = input_seq.shape[1]
        # input(batch_size, seq_len, input_size)
        input_seq = input_seq.view(self.batch_size, seq_len, self.input_size)
        # output(batch_size, seq_len, num_directions * hidden_size)
        output, _ = self.lstm(input_seq, (h_0, c_0))
        # print('output.size=', output.size())
        # print(self.batch_size * seq_len, self.hidden_size)
        output = output.contiguous().view(self.batch_size * seq_len, self.hidden_size)  # (5 * 30, 64)
        pred = self.linear(output)  # pred()
        # print('pred=', pred.shape)
        pred = pred.view(self.batch_size, seq_len, -1)
        pred = pred[:, -1, :]
        return pred

IV. 训练和预测

训练和预测代码和前几篇都差不多,只是需要注意input_size和output_size的大小。

训练了100轮,预测接下来四个时刻的负荷值,MAPE为7.53%:


现在大家对于如何用PyTorch搭建LSTM实现多变量多步长时间序列预的内容应该都有一定的认识了吧,希望这篇能对大家有所帮助。最后,想要了解更多,欢迎关注群英网络,群英网络将为大家推送更多相关的文章。 群英智防CDN,智能加速解决方案
标签: Pytorch

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服