Python处理matlab的mat数据过程是什么,错误如何解决

Admin 2022-09-09 群英技术资讯 497 次浏览

这篇主要是介绍“Python处理matlab的mat数据过程是什么,错误如何解决”的内容了,下文有实例供大家参考,对大家了解操作过程或相关知识有一定的帮助,而且实用性强,希望这篇文章能帮助大家解决Python处理matlab的mat数据过程是什么,错误如何解决的问题,下面我们一起来了解看看吧。


目录
  • 处理matlab的mat数据
  • 处理matlab的*.mat格式数据及常见错误汇总
    • 一、数据读取错误
    • 二、数据类型错误

处理matlab的mat数据

python 和matlab是2个常用的实验室平台工具,在一些应用下,这2个不同平台下的数据会打交道,因此如何读取和保存显得尤为重要,这里需要用到python的第三方平台下的scipy模块。

先用下面这个命令检查是否下载好scipy

import scipy

如果报错,用python install scipy 或者 conda install scipy 下载安装

需要用到scipy中的输入输出类中的loadmat 和savemat方法: 

import scipy.io as sio
 
sio.loadmat(file_name, mdict=None, appendmat=True, **kwargs)
sio.savemat(file_name, mdict, appendmat=True, format='5', long_field_names=False, do_compression=False, oned_as='row'

下面介绍一个简单的错误例子:(需要传字典格式的参数)

import scipy.io as sio
import numpy as np
 
x = np.ones((3,3))
 
x
Out[86]: 
array([[1., 1., 1.],
       [1., 1., 1.],
       [1., 1., 1.]])
 
sio.savemat('f.mat',x)
Traceback (most recent call last):
 
  File "<ipython-input-87-d739bc03c885>", line 1, in <module>
    sio.savemat('f.mat',x)

下面介绍一个简单的保存 导入例子:

import scipy.io as sio
import numpy as np
 
x = np.ones((3,3))
 
x
Out[86]: 
array([[1., 1., 1.],
       [1., 1., 1.],
       [1., 1., 1.]])
 
sio.savemat('f.mat',{"x":x})
 
 
 
myMat =sio.loadmat('f.mat')
 
print(myMat) #输出为字典
{'__header__': b'MATLAB 5.0 MAT-file Platform: nt, Created on: Fri Aug 21 16:29:37 2020', '__version__': '1.0', '__globals__': [], 'x': array([[1., 1., 1.],
       [1., 1., 1.],
       [1., 1., 1.]])}
 
#以保存名为key,输出list value
print(myMat['x'])
[[1. 1. 1.]
 [1. 1. 1.]
 [1. 1. 1.]]

如果想把python数据保存为mat数据,则需要cell格式数据,而python没有实现cell,因此需要用到numpy模块,可以看这篇博客。

处理matlab的*.mat格式数据及常见错误汇总

由于matlab和python两种语言的编程方式不同,有时候在进行程序混编时,需要利用python调用matlab下的格式数据,下面介绍如何调用mat格式数据及常见错误解决方法,仅供参考!

一、数据读取错误

# 最初用loadmat读取数据
import numpy as np
from scipy.io mport loadmat
img = loadmat('im.mat')['im']   #im.mat为mat数据的名称,['im'] 中的im表示该文件下im的数据

使用如上代码读取数据时,会出现如下错误:

如果出现以上错误,改用下面方式读取,

import h5py
img = h5py.File('im.mat')['im']
img = h5py.File('im.mat','r')['im']    # 无警告

二、数据类型错误

(用Python处理图像时,若涉及加减运算,溢出差值被重新赋值255-0)

# python代码
import h5py
import numpy as np
img = h5py.File('im.mat')['im']
# python中的M,N刚刚好与matlab中的M,N取值相反,此处进行转置与matlab相同矩阵格式进行处理
x = np.array(img).T  
[M, N] = x.shape
if M < 16 and N < 16:
    score = -2
# Feature Extraction:
# 1. horizontal features
d_h = x[:, 1:N] - x[:, 0:N - 1]   # 该步操作图像产生满溢,溢出后差值可能都被赋为255,依次递减

此种情况下,d_h数据会出现满溢情况,下面就是相同数据在python和matlab下面进行运算的差异性。

% Matlab 代码
img = laod('im.mat')
[M, N] = size(x)
if M < 16 | N < 16
    score = -2;
end   
x = double(img);  % 将无符号类型uint8数据类型转换为double类型
% Feature Extraction:
% 1. horizontal features
d_h = x(:, 2:N) - x(:, 1:(N-1));

原因: 导入数据类型为 uint8 数据格式,该种格式下是没有负数的,在matlab中进行运算时,先将uint8数据类型转化为了double类型,然后进行了减法运算,所以会出现如上结果,但是在python中,由于没有double类型,所以需要自己手动设置数据格式类型,只需要改成不是uint8格式即可(具体格式需要根据需求,此处改成了int8格式类型)。解决方法非常简单,只需在上面的一行代码中加入数据类型即可:

x = np.array(img,dtype = 'int8').T   # 对读取的uint8格式数据进行重新定义一下格式即可
x = np.array(img,dtype = 'float').T   # 下面这种格式虽然是浮点型,但是计算过程不容易出错,如果是上面的int8会出现部分错误,需要注意

现在看一下结果,就跟matlab处理结果一样了。

虽然下面是浮点型,但是能够保证数据转化的精度和准确性,img的影像数据转化成数值时不出错误,非必要情况下,不要使用int8数据格式,因为使用int8格式数据类型,会在某些部分出错,这一定要注意。(改组数据中(0,80)数值在int8格式转化时出错,原始数值为129,转化之后变成127,而使用float格式则不会出现错误)

原始数据unit8数据格式类型的数值为129,在python中不同格式类型的值就不一样。

所以uint8格式,在python运算中还是转换成float格式靠谱,转换成int8真的不行呀!


以上就是关于“Python处理matlab的mat数据过程是什么,错误如何解决”的相关知识,感谢各位的阅读,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注群英网络,小编每天都会为大家更新不同的知识。
群英智防CDN,智能加速解决方案
标签: python

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服