如何理解python迭代器、可迭代对象、生成器
Admin 2022-09-09 群英技术资讯 444 次浏览
迭代是一种设计模式,解决有序便利序列的问题。通用的可迭代对象需要支持done和next方法。
伪代码如下:
while not iterator.done(): item = iterator.next() .....
python的可迭代对象需要实现__iter__()方法,返回一个迭代器。for循环和顶级函数iter(obj)调用obj的__iter__()方法,返回一个迭代器。迭代器本身也是可迭代对象,所以也需要实现__iter__()方法,返回自身,同时也需要实现__next__()方法,获取下一个元素。
简单类示例:
class Iterable: def __init__(self,string): self.string = string def __iter__(): return Iterator(self.string) class Itrator: def __init__(self,string): self.string = string self.words = list(string) self.index = 0 def __iter__(self): return self def __next__(self): if self.index == len(self.words): raise StopIteration # 元素遍历完成抛出错误,for循环自动处理 item = self.words[self.index] self.index += 1 return item
生成器帮助迭代器省内存。在上面的例子可以看出,可迭代对象会一次性把所有元素生成并保存。但是有时候,我们只关注当前处理的元素。如果元素数量庞大,比如说在处理大量日志分析的时候,一次性把所有行加载到内存,导致内存浪费严重。所以才有了生成器。
yield关键字让python生成器实现超级方便。yield可看成是代码执行暂停,直到下一次next()方法调用,然后遇到下一个yield再次暂停。另外,yield xxx 表示回元素xxx。
def my_generator(stirng): for x in string: yield x
需要注意的是,虽然我们定义的是函数,但是实际上,python会自动将其转换成一个生成器对象,而不是一个普通的函数对象。
协程程用是让我们可以往生成器发送数据。协程与生成器语法区别是: xx = yield xxx,即yield左边有赋值语句,send(a)方法会将a赋值给xx,协程对象返回xxx。协程的这个特征,被用于异步编程和并发编程,在程序遇到IO时自动暂停切换。
协程执行顺序:
关于“如何理解python迭代器、可迭代对象、生成器”的内容今天就到这,感谢各位的阅读,大家可以动手实际看看,对大家加深理解更有帮助哦。如果想了解更多相关内容的文章,关注我们,群英网络小编每天都会为大家更新不同的知识。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
本文主要介绍了pytest中配置文件pytest.ini使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
这篇文章主要介绍了OpenCV实战之OpenCV中的颜色空间,解计算机视觉中常用的色彩空间,并将其用于基于颜色分割。我们还将用C ++和Python共享演示代码,下文详细内容需要的小伙伴可以参考一下
这篇文章主要介绍了如何利用 K-Means 聚类进行色彩量化,以减少图像中颜色数量。文中的代码具有一定的学习价值,感兴趣的小伙伴可以关注一下
这篇文章主要介绍pytorch中常用损失函数以及用法,对新手学习pytorch中损失函数有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章能有所收获,接下来小编带着大家一起了解看看。
在本篇文章里小编给大家整理了关于如何完美的建立一个python项目的相关知识点内容,需要的朋友们可以学习下。
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008