PyTorch如何搭建一个LSTM用于时间序列预测

Admin 2022-09-09 群英技术资讯 282 次浏览

今天这篇给大家分享的知识是“PyTorch如何搭建一个LSTM用于时间序列预测”,小编觉得挺不错的,对大家学习或是工作可能会有所帮助,对此分享发大家做个参考,希望这篇“PyTorch如何搭建一个LSTM用于时间序列预测”文章能帮助大家解决问题。



I. 前言

在上一篇文章深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中,我详细地解释了如何利用PyTorch来搭建一个LSTM模型,本篇文章的主要目的是搭建一个LSTM模型用于时间序列预测。

系列文章:

PyTorch搭建LSTM实现多变量多步长时序负荷预测

PyTorch搭建LSTM实现多变量时序负荷预测

PyTorch深度学习LSTM从input输入到Linear输出

PyTorch搭建双向LSTM实现时间序列负荷预测

II. 数据处理

数据集为某个地区某段时间内的电力负荷数据,除了负荷以外,还包括温度、湿度等信息。

本篇文章暂时不考虑其它变量,只考虑用历史负荷来预测未来负荷。

本文中,我们根据前24个时刻的负荷下一时刻的负荷。有关多变量预测请参考:PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)。

def load_data(file_name):
    global MAX, MIN
    df = pd.read_csv('data/new_data/' + file_name, encoding='gbk')
    columns = df.columns
    df.fillna(df.mean(), inplace=True)
    MAX = np.max(df[columns[1]])
    MIN = np.min(df[columns[1]])
    df[columns[1]] = (df[columns[1]] - MIN) / (MAX - MIN)
    return df
class MyDataset(Dataset):
    def __init__(self, data):
        self.data = data
    def __getitem__(self, item):
        return self.data[item]
    def __len__(self):
        return len(self.data)
def nn_seq(file_name, B):
    print('处理数据:')
    data = load_data(file_name)
    load = data[data.columns[1]]
    load = load.tolist()
    load = torch.FloatTensor(load).view(-1)
    data = data.values.tolist()
    seq = []
    for i in range(len(data) - 24):
        train_seq = []
        train_label = []
        for j in range(i, i + 24):
            train_seq.append(load[j])
        train_label.append(load[i + 24])
        train_seq = torch.FloatTensor(train_seq).view(-1)
        train_label = torch.FloatTensor(train_label).view(-1)
        seq.append((train_seq, train_label))
    # print(seq[:5])
    Dtr = seq[0:int(len(seq) * 0.7)]
    Dte = seq[int(len(seq) * 0.7):len(seq)]
    train_len = int(len(Dtr) / B) * B
    test_len = int(len(Dte) / B) * B
    Dtr, Dte = Dtr[:train_len], Dte[:test_len]
    train = MyDataset(Dtr)
    test = MyDataset(Dte)
    Dtr = DataLoader(dataset=train, batch_size=B, shuffle=False, num_workers=0)
    Dte = DataLoader(dataset=test, batch_size=B, shuffle=False, num_workers=0)
    return Dtr, Dte

上面代码用了DataLoader来对原始数据进行处理,最终得到了batch_size=B的数据集Dtr和Dte,Dtr为训练集,Dte为测试集。

III. LSTM模型

这里采用了深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中的模型:

class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):
        super().__init__()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.output_size = output_size
        self.num_directions = 1 # 单向LSTM
        self.batch_size = batch_size
        self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)
        self.linear = nn.Linear(self.hidden_size, self.output_size)
    def forward(self, input_seq):
        h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
        seq_len = input_seq.shape[1] # (5, 24)
        # input(batch_size, seq_len, input_size)
        input_seq = input_seq.view(self.batch_size, seq_len, 1)  # (5, 24, 1)
        # output(batch_size, seq_len, num_directions * hidden_size)
        output, _ = self.lstm(input_seq, (h_0, c_0)) # output(5, 24, 64)
        output = output.contiguous().view(self.batch_size * seq_len, self.hidden_size) # (5 * 24, 64)
        pred = self.linear(output) # pred(150, 1)
        pred = pred.view(self.batch_size, seq_len, -1) # (5, 24, 1)
        pred = pred[:, -1, :]  # (5, 1)
        return pred

IV. 训练

def LSTM_train(name, b):
    Dtr, Dte = nn_seq(file_name=name, B=b)
    input_size, hidden_size, num_layers, output_size = 1, 64, 5, 1
    model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=b).to(device)
    loss_function = nn.MSELoss().to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    # 训练
    epochs = 15
    cnt = 0
    for i in range(epochs):
        cnt = 0
        print('当前', i)
        for (seq, label) in Dtr:
            cnt += 1
            seq = seq.to(device)
            label = label.to(device)
            y_pred = model(seq)
            loss = loss_function(y_pred, label)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if cnt % 100 == 0:
                print('epoch', i, ':', cnt - 100, '~', cnt, loss.item())
    state = {'model': model.state_dict(), 'optimizer': optimizer.state_dict()}
    torch.save(state, LSTM_PATH)

一共训练了15轮:

V. 测试

def test(name, b):
    global MAX, MIN
    Dtr, Dte = nn_seq(file_name=name, B=b)
    pred = []
    y = []
    print('loading model...')
    input_size, hidden_size, num_layers, output_size = 1, 64, 5, 1
    model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=b).to(device)
    model.load_state_dict(torch.load(LSTM_PATH)['model'])
    model.eval()
    print('predicting...')
    for (seq, target) in Dte:
        target = list(chain.from_iterable(target.data.tolist()))
        y.extend(target)
        seq = seq.to(device)
        seq_len = seq.shape[1]
        seq = seq.view(model.batch_size, seq_len, 1)  # (5, 24, 1)
        with torch.no_grad():
            y_pred = model(seq)
            y_pred = list(chain.from_iterable(y_pred.data.tolist()))
            pred.extend(y_pred)
    y, pred = np.array(y), np.array(pred)
    y = (MAX - MIN) * y + MIN
    pred = (MAX - MIN) * pred + MIN
    print('accuracy:', get_mape(y, pred))
    # plot
    x = [i for i in range(1, 151)]
    x_smooth = np.linspace(np.min(x), np.max(x), 600)
    y_smooth = make_interp_spline(x, y[0:150])(x_smooth)
    plt.plot(x_smooth, y_smooth, c='green', marker='*', ms=1, alpha=0.75, label='true')
    y_smooth = make_interp_spline(x, pred[0:150])(x_smooth)
    plt.plot(x_smooth, y_smooth, c='red', marker='o', ms=1, alpha=0.75, label='pred')
    plt.grid(axis='y')
    plt.legend()
    plt.show()

MAPE为6.07%:


到此这篇关于“PyTorch如何搭建一个LSTM用于时间序列预测”的文章就介绍到这了,更多相关内容请搜索群英网络以前的文章或继续浏览下面的相关文章,希望大家以后多多支持群英网络!
群英智防CDN,智能加速解决方案
标签: Pytorch

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服