Python打印类的属性和方法怎样做,代码是什么
Admin 2022-09-08 群英技术资讯 321 次浏览
利用dir(obj)方法获得obj对象的所有属性和方法名,返回一个list。
for item in dir(top_k_metergroup): #top_k_metergroup是某类的一个实例化对象 print(item)
__class__ __delattr__ __dict__ __dir__ __doc__ __eq__ __format__ __ge__ __getattribute__ __getitem__ __gt__ __hash__ __init__ __init_subclass__ __le__ __lt__ __module__ __ne__ __new__ __reduce__ __reduce_ex__ __repr__ __setattr__ __sizeof__ __str__ __subclasshook__ __weakref__ _aggregate_metadata_attribute _check_kwargs_for_full_results_and_sections _collect_stats_on_all_meters _convert_physical_quantity_and_ac_type_to_cols _energy_per_meter_with_remainder _meter_generators _plot_area _plot_energy_bar _plot_sankey _plot_separate_lines _prep_kwargs_for_sample_period_and_resample _replace_none_with_meter_timeframe _set_sample_period activation_series activity_histogram all_meters appliances available_ac_types available_physical_quantities available_power_ac_types average_energy_per_period building call_method_on_all_meters clear_cache contains_meters_from_multiple_buildings correlation correlation_of_sum_of_submeters_with_mains dataframe_of_meters dataset describe disabled_meters dominant_appliance dominant_appliances draw_wiring_graph dropout_rate energy_per_meter entropy entropy_per_meter fraction_per_meter from_list from_other_metergroup get_activations get_labels get_timeframe good_sections groupby identifier import_metadata instance is_site_meter label load load_series mains matches matches_appliances meters meters_directly_downstream_of_mains min_off_duration min_on_duration mutual_information name nested_metergroups on_power_threshold pairwise pairwise_correlation pairwise_mutual_information plot plot_activity_histogram plot_autocorrelation plot_good_sections plot_lag plot_multiple plot_power_histogram plot_spectrum plot_when_on power_series power_series_all_data proportion_of_energy proportion_of_energy_submetered proportion_of_upstream proportion_of_upstream_total_per_meter sample_period select select_top_k select_using_appliances simultaneous_switches sort_meters submeters switch_times total_energy train_test_split union upstream_meter uptime use_alternative_mains values_for_appliance_metadata_key vampire_power when_on wiring_graph
把每个字母相加输出就可以得到相应的字符串。
print("Mary had a little lamb.") print("Its fleece was white as {}." .format('snow')) #将snow放入字符串的相应位置 print("And everywhere that Mary went.") print("." * 10) # what'd that do? end1 = "C" end2 = "h" end3 = "e" end4 = "e" end5 = "s" end6 = "e" end7 = "B" end8 = "u" end9 = "r" end10 = "g" end11 = "e" end12 = "r" # watch that comma at the end. try removing it to see what happens print(end1 + end2 + end3 + end4 + end5 + end6, end = ' ' ) # end = ' ' 为连接前后的成分,使其不换行 print(end7 + end8 + end9 + end10 + end11 + end12)
运行结果:
其作用是:
<1>.取第1行定义的 formatter 字符串。
<2>.调用它的 format 函数,这相当于告诉它执行一个叫 format 的命令行命令。
<3>.给 format 传递4个参数,这些参数和 formatter 变量中的{}匹配,相当于将参数传递给了 format 这个命令。
<4>.在 formatter 上调用 format的结果是一个新字符串,其中的{}被4个变量替换掉了,这就是 print 现在打印出的结果。
formatter="{} {} {} {}" print(formatter.format(1,2,3,4)) print(formatter.format("one","two","three","four")) print(formatter.format(True,False,False,True)) print(formatter.format(formatter,formatter,formatter,formatter)) print(formatter.format( "Try your", "Own text here", "Maybe a poem", "or a song about fear" ))
运行结果:
“\n” 是换行符。
# Here's some new strange stuff, remember type it exactlyself. days = "Mon Tue Wed Thu Fri Sat Sun" months = "\nJan\nFeb\nMar\nApr\nMay\nJun\nJul\nAug" print("Here are the days: ", days) print("here are the months: ", months) print(""" There's something going on here. With the three double-quotes. we'll be able to type as much as we like. Even 4 lines if we want, or 5, or 6. """)
运行结果:
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
怎样用Python实现文本的滚动播放?对于文本滚动播放的应用场景有很多,我们经常能在网站的顶部看到,文本滚动播放功能也是比较实用的,下面我们就来看看用Python怎样写文本的滚动播放功能。
我们在Python中会遇到很多转换的问题,例如需要字符串,而输入内容为二进制。码的是字符串,却要是字符串。字符串与二进制如何相互转换呢?本文向大家介绍Python中字符串与二进制相互转换的两种方法,一个是简单版本,另一个是依靠bitarray对象,也是可以轻松转化。内容如下:
pandas里怎样处理缺失值为NaN的情况?Python中我们用pandas处理数据非常的方便,但是也常会遇到一些问题。例如andas中NaN缺失值的情况,一些新手朋友可能不太清楚怎样解决,下面给大家分享两种处理pandas中NaN缺失值的方法,有需要的朋友可以参考。
Pampy是Python的一个模式匹配类库,一个只有150行的类库,该库优雅、高效值得广大Python的码农加入自己基本开发栈中。本文就来讲讲Pampy的用法,需要的可以参考一下
这篇文章主要为大家介绍了python神经网络Keras搭建RFBnet目标检测平台,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008