Pytorch识别LeNet模型怎样实现的

Admin 2022-09-06 群英技术资讯 478 次浏览

这篇文章给大家分享的是Pytorch识别LeNet模型怎样实现的。小编觉得挺实用的,因此分享给大家做个参考,文中的介绍得很详细,而要易于理解和学习,有需要的朋友可以参考,接下来就跟随小编一起了解看看吧。
    

LeNet网络

LeNet网络过卷积层时候保持分辨率不变,过池化层时候分辨率变小。实现如下

from PIL import Image
import cv2
import matplotlib.pyplot as plt
import torchvision
from torchvision import transforms
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import numpy as np
import tqdm as tqdm

class LeNet(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.sequential = nn.Sequential(nn.Conv2d(1,6,kernel_size=5,padding=2),nn.Sigmoid(),
                                        nn.AvgPool2d(kernel_size=2,stride=2),
                                        nn.Conv2d(6,16,kernel_size=5),nn.Sigmoid(),
                                        nn.AvgPool2d(kernel_size=2,stride=2),
                                        nn.Flatten(),
                                        nn.Linear(16*25,120),nn.Sigmoid(),
                                        nn.Linear(120,84),nn.Sigmoid(),
                                        nn.Linear(84,10))
        
    
    def forward(self,x):
        return self.sequential(x)

class MLP(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.sequential = nn.Sequential(nn.Flatten(),
                          nn.Linear(28*28,120),nn.Sigmoid(),
                          nn.Linear(120,84),nn.Sigmoid(),
                          nn.Linear(84,10))
        
    
    def forward(self,x):
        return self.sequential(x)

epochs = 15
batch = 32
lr=0.9
loss = nn.CrossEntropyLoss()
model = LeNet()
optimizer = torch.optim.SGD(model.parameters(),lr)
device = torch.device('cuda')
root = r"./"
trans_compose  = transforms.Compose([transforms.ToTensor(),
                    ])
train_data = torchvision.datasets.MNIST(root,train=True,transform=trans_compose,download=True)
test_data = torchvision.datasets.MNIST(root,train=False,transform=trans_compose,download=True)
train_loader = DataLoader(train_data,batch_size=batch,shuffle=True)
test_loader = DataLoader(test_data,batch_size=batch,shuffle=False)

model.to(device)
loss.to(device)
# model.apply(init_weights)
for epoch in range(epochs):
  train_loss = 0
  test_loss = 0
  correct_train = 0
  correct_test = 0
  for index,(x,y) in enumerate(train_loader):
    x = x.to(device)
    y = y.to(device)
    predict = model(x)
    L = loss(predict,y)
    optimizer.zero_grad()
    L.backward()
    optimizer.step()
    train_loss = train_loss + L
    correct_train += (predict.argmax(dim=1)==y).sum()
  acc_train = correct_train/(batch*len(train_loader))
  with torch.no_grad():
    for index,(x,y) in enumerate(test_loader):
      [x,y] = [x.to(device),y.to(device)]
      predict = model(x)
      L1 = loss(predict,y)
      test_loss = test_loss + L1
      correct_test += (predict.argmax(dim=1)==y).sum()
    acc_test = correct_test/(batch*len(test_loader))
  print(f'epoch:{epoch},train_loss:{train_loss/batch},test_loss:{test_loss/batch},acc_train:{acc_train},acc_test:{acc_test}')

训练结果

epoch:12,train_loss:2.235553741455078,test_loss:0.3947642743587494,acc_train:0.9879833459854126,acc_test:0.9851238131523132
epoch:13,train_loss:2.028963804244995,test_loss:0.3220392167568207,acc_train:0.9891499876976013,acc_test:0.9875199794769287
epoch:14,train_loss:1.8020273447036743,test_loss:0.34837451577186584,acc_train:0.9901833534240723,acc_test:0.98702073097229

泛化能力测试

找了一张图片,将其分割成只含一个数字的图片进行测试

images_np = cv2.imread("/content/R-C.png",cv2.IMREAD_GRAYSCALE)
h,w = images_np.shape
images_np = np.array(255*torch.ones(h,w))-images_np#图片反色
images = Image.fromarray(images_np)
plt.figure(1)
plt.imshow(images)
test_images = []
for i in range(10):
  for j in range(16):
    test_images.append(images_np[h//10*i:h//10+h//10*i,w//16*j:w//16*j+w//16])
sample = test_images[77]
sample_tensor = torch.tensor(sample).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)
sample_tensor = torch.nn.functional.interpolate(sample_tensor,(28,28))
predict = model(sample_tensor)
output = predict.argmax()
print(output)
plt.figure(2)
plt.imshow(np.array(sample_tensor.squeeze().to('cpu')))

此时预测结果为4,预测正确。从这段代码中可以看到有一个反色的步骤,若不反色,结果会受到影响,如下图所示,预测为0,错误。
模型用于输入的图片是单通道的黑白图片,这里由于可视化出现了黄色,但实际上是黑白色,反色操作说明了数据的预处理十分的重要,很多数据如果是不清理过是无法直接用于推理的。

将所有用来泛化性测试的图片进行准确率测试:

correct = 0
i = 0
cnt = 1
for sample in test_images:
  sample_tensor = torch.tensor(sample).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)
  sample_tensor = torch.nn.functional.interpolate(sample_tensor,(28,28))
  predict = model(sample_tensor)
  output = predict.argmax()
  if(output==i):
    correct+=1
  if(cnt%16==0):
    i+=1
  cnt+=1
acc_g = correct/len(test_images)
print(f'acc_g:{acc_g}')

如果不反色,acc_g=0.15

acc_g:0.50625

以上就是关于“Pytorch识别LeNet模型怎样实现的”的相关知识,感谢各位的阅读,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注群英网络,小编每天都会为大家更新不同的知识。
群英智防CDN,智能加速解决方案
标签: Pytorch

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服