Plotly可视化的方法有几种,Plotly有哪些好处
Admin 2022-09-06 群英技术资讯 293 次浏览
本文将介绍 5 种基于 Plotly 的可视化方法,你会发现,原来可视化不仅可用直方图和箱形图,还能做得如此动态好看甚至可交互。
那么,Plotly 有哪些好处?Plotly 的整合能力很强:可与 Jupyter Notebook 一起使用,可嵌入网站,并且完整集成了 Dash——一种用于构建仪表盘和分析应用的出色工具。
如果你还没安装 Plotly,只需在你的终端运行以下命令即可完成安装:
pip install plotly
安装完成后,就开始使用吧!
在研究这个或那个指标的演变时,我们常涉及到时间数据。Plotly 动画工具仅需一行代码就能让人观看数据随时间的变化情况,如下图所示:
代码如下:
import plotly.express as px from vega_datasets import data df = data.disasters() df = df[df.Year > 1990] fig = px.bar(df, y="Entity", x="Deaths", animation_frame="Year", orientation='h', range_x=[0, df.Deaths.max()], color="Entity") # improve aesthetics (size, grids etc.) fig.update_layout(width=1000, height=800, xaxis_showgrid=False, yaxis_showgrid=False, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)', title_text='Evolution of Natural Disasters', showlegend=False) fig.update_xaxes(title_text='Number of Deaths') fig.update_yaxes(title_text='') fig.show()
只要你有一个时间变量来过滤,那么几乎任何图表都可以做成动画。下面是一个制作散点图动画的例子:
import plotly.express as px df = px.data.gapminder() fig = px.scatter( df, x="gdpPercap", y="lifeExp", animation_frame="year", size="pop", color="continent", hover_name="country", log_x=True, size_max=55, range_x=[100, 100000], range_y=[25, 90], # color_continuous_scale=px.colors.sequential.Emrld ) fig.update_layout(width=1000, height=800, xaxis_showgrid=False, yaxis_showgrid=False, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)')
太阳图(sunburst chart)是一种可视化 group by 语句的好方法。如果你想通过一个或多个类别变量来分解一个给定的量,那就用太阳图吧。
假设我们想根据性别和每天的时间分解平均小费数据,那么相较于表格,这种双重 group by 语句可以通过可视化来更有效地展示。
这个图表是交互式的,让你可以自己点击并探索各个类别。你只需要定义你的所有类别,并声明它们之间的层次结构(见以下代码中的 parents 参数)并分配对应的值即可,这在我们案例中即为 group by 语句的输出。
import plotly.graph_objects as go import plotly.express as px import numpy as np import pandas as pd df = px.data.tips() fig = go.Figure(go.Sunburst( labels=["Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch '], parents=["", "", "Female", "Female", 'Male', 'Male'], values=np.append( df.groupby('sex').tip.mean().values, df.groupby(['sex', 'time']).tip.mean().values), marker=dict(colors=px.colors.sequential.Emrld)), layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)')) fig.update_layout(margin=dict(t=0, l=0, r=0, b=0), title_text='Tipping Habbits Per Gender, Time and Day') fig.show()
现在我们向这个层次结构再添加一层:
为此,我们再添加另一个涉及三个类别变量的 group by 语句的值。
import plotly.graph_objects as go import plotly.express as px import pandas as pd import numpy as np df = px.data.tips() fig = go.Figure(go.Sunburst(labels=[ "Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch ', 'Fri', 'Sat', 'Sun', 'Thu', 'Fri ', 'Thu ', 'Fri ', 'Sat ', 'Sun ', 'Fri ', 'Thu ' ], parents=[ "", "", "Female", "Female", 'Male', 'Male', 'Dinner', 'Dinner', 'Dinner', 'Dinner', 'Lunch', 'Lunch', 'Dinner ', 'Dinner ', 'Dinner ', 'Lunch ', 'Lunch ' ], values=np.append( np.append( df.groupby('sex').tip.mean().values, df.groupby(['sex', 'time']).tip.mean().values, ), df.groupby(['sex', 'time', 'day']).tip.mean().values), marker=dict(colors=px.colors.sequential.Emrld)), layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)')) fig.update_layout(margin=dict(t=0, l=0, r=0, b=0), title_text='Tipping Habbits Per Gender, Time and Day') fig.show()
另一种探索类别变量之间关系的方法是以下这种流程图。你可以随时拖放、高亮和浏览值,非常适合演示时使用。
代码如下:
import plotly.express as px from vega_datasets import data import pandas as pd df = data.movies() df = df.dropna() df['Genre_id'] = df.Major_Genre.factorize()[0] fig = px.parallel_categories( df, dimensions=['MPAA_Rating', 'Creative_Type', 'Major_Genre'], color="Genre_id", color_continuous_scale=px.colors.sequential.Emrld, ) fig.show()
平行坐标图是上面的图表的连续版本。这里,每一根弦都代表单个观察。这是一种可用于识别离群值(远离其它数据的单条线)、聚类、趋势和冗余变量(比如如果两个变量在每个观察上的值都相近,那么它们将位于同一水平线上,表示存在冗余)的好用工具。
代码如下:
import plotly.express as px from vega_datasets import data import pandas as pd df = data.movies() df = df.dropna() df['Genre_id'] = df.Major_Genre.factorize()[0] fig = px.parallel_coordinates( df, dimensions=[ 'IMDB_Rating', 'IMDB_Votes', 'Production_Budget', 'Running_Time_min', 'US_Gross', 'Worldwide_Gross', 'US_DVD_Sales' ], color='IMDB_Rating', color_continuous_scale=px.colors.sequential.Emrld) fig.show()
量表图仅仅是为了好看。在报告 KPI 等成功指标并展示其与你的目标的距离时,可以使用这种图表。
指示器在业务和咨询中非常有用。它们可以通过文字记号来补充视觉效果,吸引观众的注意力并展现你的增长指标。
import plotly.graph_objects as go fig = go.Figure(go.Indicator( domain = {'x': [0, 1], 'y': [0, 1]}, value = 4.3, mode = "gauge+number+delta", title = {'text': "Success Metric"}, delta = {'reference': 3.9}, gauge = {'bar': {'color': "lightgreen"}, 'axis': {'range': [None, 5]}, 'steps' : [ {'range': [0, 2.5], 'color': "lightgray"}, {'range': [2.5, 4], 'color': "gray"}], })) fig.show()
到此这篇关于Python 数据可视化实现5种炫酷的动态图的文章就介绍到这了,更多相关Python 数据可视化内容请搜索站长源码网以前的文章或继续浏览下面的相关文章希望大家以后多多支持站长源码网!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
本文主要介绍了pyscript的简单应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
什么是异常?当Python检测到一个错误时,解释器就无法继续执行了,反而出现了一些错误的提示,这就是所谓的"异常"。
这篇文章主要介绍了Python写一个简单上课点名系统,文章围绕Python得性概念资料写一个简的得上课点名系统,并附上详细的代码即过程总结,需要的朋友可以参考一下,希望对你有所帮助
利用(面向)对象的(属性和方法)去进行编码的过程即面向对象编程。本文将通过示例详细为大家介绍一下Python中的面向对象编程,需要的可以参考一下
#用正则简单过滤html的<>标签importrestr="<img/><a>srcd</a>hello</br><br/>"str=re.sub(r'</?\w+[^>]*>','',str)print(str)importretest='&am
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008