基于Python怎样实现批量抠图的功能,代码是什么
Admin 2022-09-05 群英技术资讯 409 次浏览
抠图前 vs Python自动抠图后
在日常的工作和生活中,我们经常会遇到需要抠图的场景,即便是只有一张图片需要抠,也会抠得我们不耐烦,倘若遇到许多张图片需要抠,这时候你的表情应该会很有趣。
Python能够成为这样的一种工具:在只有一张图片,需要细致地抠出人物的情况下,能帮你减少抠图步骤;在有多张图片需要抠的情况下,能直接帮你输出这些人物的基本轮廓,虽然不够细致,但也够用了。
DeepLabv3+ 是谷歌 DeepLab语义分割系列网络的最新作 ,这个模型可以用于人像分割,支持任意大小的图片输入。如果我们自己来实现这个模型,那可能会非常麻烦,但是幸运的是,百度的paddle hub已经帮我们实现了,我们仅需要加载模型对图像进行分割即可。
为了实现这个实验,Python是必不可少的,如果你还没有安装Python,建议阅读我们的这篇文章哦:超详细Python安装指南。
然后,我们需要安装百度的paddlepaddle, 进入他们的官方网站就有详细的指引
根据你自己的情况选择这些选项,最后一个CUDA版本,由于本实验不需要训练数据,也不需要太大的计算量,所以直接选择CPU版本即可。选择完毕,下方会出现安装指引,不得不说,Paddlepaddle这些方面做的还是比较贴心的(就是名字起的不好)。
要注意,如果你的Python3环境变量里的程序名称是Python,记得将python3 xxx 语句改为Python xxx 如下进行安装:
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
整个步骤分为三步:
1.加载模型
2.指定待抠图的图片目录
3.抠图
import os import sys import paddlehub as hub # 1.加载模型 humanseg = hub.Module(name="deeplabv3p_xception65_humanseg") # 2.指定待抠图图片目录 path = './source/' files = [] dirs = os.listdir(path) for diretion in dirs: files.append(path + diretion) # 3.抠图 results = humanseg.segmentation(data={"image": files}) for result in results: print(result['origin']) print(result['processed'])
不多不少一共20行代码。抠图完毕后会在本地文件夹下产生一个叫做humanseg_output的文件夹。这里面存放的是已经抠图成功的图片。
素材获取地址
不得不承认,谷歌的算法就素厉害啊。只要背景好一点,抠出来的细节都和手动抠的细节不相上下,甚至优于人工手段。
不过在背景和人的颜色不相上下的情况下,会产生一些问题,比如下面这个结果:
背后那个大叔完全被忽略掉了(求大叔的内心阴影面积)。尽管如此,这个模型是我迄今为止见过的最强抠图模型,没有之一。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家介绍了Python利用networkx画图处理绘制Les Misérables悲惨世界里的人物关系图,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
python fire是什么?就是以广义对象的方式玩命令行,可以是类、函数、字典、列表等,更灵活简单。
由于字符串数据几乎无处不在,因此掌握有关字符串的交易工具非常重要。幸运的是,Python 使字符串操作变得非常简单,尤其是与其他语言甚至旧版本的 Python 相比时。本文将为大家详细介绍Python中字符串的拆分与连接,需要的可以参考一下
这篇文章主要为大家介绍了python四则运算表达式求值示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
这篇文章主要介绍了Python深度学习之使用Pytorch搭建ShuffleNetv2,文中有非常详细的图文示例,对正在学习python的小伙伴们有非常好的帮助,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008