BN和dropout是什么,使用有哪些不同

Admin 2022-09-05 群英技术资讯 301 次浏览

本篇内容介绍了“BN和dropout是什么,使用有哪些不同”的有关知识,在实际项目的操作过程或是学习过程中,不少人都会遇到这样的问题,接下来就让小编带大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

Batch Normalization和Dropout是深度学习模型中常用的结构。但BN和dropout在训练和测试时使用却不相同。

Batch Normalization

BN在训练时是在每个batch上计算均值和方差来进行归一化,每个batch的样本量都不大,所以每次计算出来的均值和方差就存在差异。预测时一般传入一个样本,所以不存在归一化,其次哪怕是预测一个batch,但batch计算出来的均值和方差是偏离总体样本的,所以通常是通过滑动平均结合训练时所有batch的均值和方差来得到一个总体均值和方差。

以tensorflow代码实现为例:

def bn_layer(self, inputs, training, name='bn', moving_decay=0.9, eps=1e-5):
        # 获取输入维度并判断是否匹配卷积层(4)或者全连接层(2)
        shape = inputs.shape
        param_shape = shape[-1]
        with tf.variable_scope(name):
            # 声明BN中唯一需要学习的两个参数,y=gamma*x+beta
            gamma = tf.get_variable('gamma', param_shape, initializer=tf.constant_initializer(1))
            beta  = tf.get_variable('beat', param_shape, initializer=tf.constant_initializer(0))
            # 计算当前整个batch的均值与方差
            axes = list(range(len(shape)-1))
            batch_mean, batch_var = tf.nn.moments(inputs , axes, name='moments')
            # 采用滑动平均更新均值与方差
            ema = tf.train.ExponentialMovingAverage(moving_decay, name="ema")
            def mean_var_with_update():
                ema_apply_op = ema.apply([batch_mean, batch_var])
                with tf.control_dependencies([ema_apply_op]):           
                    return tf.identity(batch_mean), tf.identity(batch_var)
            # 训练时,更新均值与方差,测试时使用之前最后一次保存的均值与方差
            mean, var = tf.cond(tf.equal(training,True), mean_var_with_update,
                    lambda:(ema.average(batch_mean), ema.average(batch_var)))
            # 最后执行batch normalization
            return tf.nn.batch_normalization(inputs ,mean, var, beta, gamma, eps)

training参数可以通过tf.placeholder传入,这样就可以控制训练和预测时training的值。

self.training = tf.placeholder(tf.bool, name="training")

Dropout

Dropout在训练时会随机丢弃一些神经元,这样会导致输出的结果变小。而预测时往往关闭dropout,保证预测结果的一致性(不关闭dropout可能同一个输入会得到不同的输出,不过输出会服从某一分布。另外有些情况下可以不关闭dropout,比如文本生成下,不关闭会增大输出的多样性)。

为了对齐Dropout训练和预测的结果,通常有两种做法,假设dropout rate = 0.2。一种是训练时不做处理,预测时输出乘以(1 - dropout rate)。另一种是训练时留下的神经元除以(1 - dropout rate),预测时不做处理。以tensorflow为例。

x = tf.nn.dropout(x, self.keep_prob)
self.keep_prob = tf.placeholder(tf.float32, name="keep_prob")

tf.nn.dropout就是采用了第二种做法,训练时除以(1 - dropout rate),源码如下:

binary_tensor = math_ops.floor(random_tensor)
 ret = math_ops.div(x, keep_prob) * binary_tensor
 if not context.executing_eagerly():
   ret.set_shape(x.get_shape())
 return ret

binary_tensor就是一个mask tensor,即里面的值由0或1组成。keep_prob = 1 - dropout rate。


上述内容具有一定的借鉴价值,感兴趣的朋友可以参考,希望能对大家有帮助,想要了解更多"BN和dropout是什么,使用有哪些不同"的内容,大家可以关注群英网络的其它相关文章。 群英智防CDN,智能加速解决方案
标签: BN和dropout

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服