用numpy.mean怎样计算矩阵均值,代码是什么

Admin 2022-09-03 群英技术资讯 279 次浏览

这篇文章给大家介绍了“用numpy.mean怎样计算矩阵均值,代码是什么”的相关知识,讲解详细,步骤过程清晰,有一定的借鉴学习价值,因此分享给大家做个参考,感兴趣的朋友接下来一起跟随小编看看吧。

numpy.mean计算矩阵均值

计算矩阵的均值

>>> a = np.array([[1, 2], [3, 4]])
>>> np.mean(a) # 将上面二维矩阵的每个元素相加除以元素个数(求平均数)
2.5
>>> np.mean(a, axis=0) # axis=0,计算每一列的均值
array([ 2.,  3.])
>>> np.mean(a, axis=1) # 计算每一行的均值
array([ 1.5,  3.5])

官方手册

均值函数numpy.mean

mean是numpy中常用的求均值函数

现将mean的常用方法总结如下:

函数体:

numpy.mean(a, axis=None, dtype=None, out=None, keepdims= < class ‘numpy._globals._NoValue'>)[source]

功能:

  • 计算指定轴的算术平均值。
  • 返回数组元素的平均值。默认的情况下,求均值的操作在平展开来的数组上进行,否则就在指定的轴上。

参数:

①a:必须是数组。

②axis:默认条件下是flatten的array,可以指定相应的轴。

如果是二维矩阵,axis=0返回纵轴的平均值,axis=1返回横轴的平均值。

例子如下:

>>> a = np.array([[1, 2], [3, 4]])
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0)
array([ 2.,  3.])
>>> np.mean(a, axis=1)
array([ 1.5,  3.5])
  • 你也可以用a.mean(1)来代替np.mean(a,axis=1)
  • 这样子更简洁

返回值:

在out=None的情况下,返回的就是你要的平均值呗~

否则,返回一个对平均值的引用。

注意(关于精度):

算术平均值是沿轴的元素总和除以元素的数量。既然是除法,就涉及到一个精确度的问题。

对于浮点输入,平均值的计算使用与输入相同的精度计算,这可能会导致结果不准确,特别是对于float32来说。为了缓解这个问题,我们可以使用dtype关键字指定更高精度的累加器。

具体看下面这个例程:

>>> a = np.zeros((2, 512*512), dtype=np.float32)
>>> a[0, :] = 1.0
>>> a[1, :] = 0.1
>>> np.mean(a)
0.54999924
>>> np.mean(a, dtype=np.float64)
0.55000000074505806

如果想要返回标准差,可以调用标准差函数

std = sqrt(平均值(abs(x-x.mean())** 2))

>>> a = np.array([[1, 2], [3, 4]])
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0)
array([ 1.,  1.])
>>> np.std(a, axis=1)
array([ 0.5,  0.5])

关于“用numpy.mean怎样计算矩阵均值,代码是什么”就介绍到这了,如果大家觉得不错可以参考了解看看,如果想要了解更多,欢迎关注群英网络,小编每天都会为大家更新不同的知识。 群英智防CDN,智能加速解决方案
标签: 计算矩阵均值

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服