ShuffleNetV2模型复现的相关知识有什么
Admin 2022-09-03 群英技术资讯 264 次浏览
据说ShuffleNetV2比Mobilenet还要厉害,我决定好好学一下
这篇是ECCV2018关于轻量级模型的文章。
目前大部分的轻量级模型在对比模型速度时用的指标是FLOPs,这个指标主要衡量的就是卷积层的乘法操作。
但是实际运用中会发现,同一个FLOPS的网络运算速度却不同,只用FLOPS去进行衡量的话并不能完全代表模型速度。
通过如下图所示对比,作者发现Elemwise/Data IO等内存读写密集型操作也会极大的影响模型运算速度。
结合理论与实验作者提出了4条实用的指导原则:
1、卷积层的输入和输出特征通道数相等时MAC最小,此时模型速度最快。
2、过量使用组卷积会增加MAC。
3、网络碎片化会降低并行度。
4、不能忽略元素级操作,比如ReLU和Add,虽然它们的FLOPs较小,但是却需要较大的MAC。
如图所示是ShuffleNetV2所常用的两个模块:
1、当Stride==1的时候,采用左边的模块,由于残差边没有卷积,因此宽高不变,主要用于加深网络层数。
2、当Stride==2的时候,采用右边的模块,由于残差边有卷积,因此宽高可变,主要用于压缩特征层的宽高,进行下采样。
模块实现代码如下:
def channel_split(x, name=''): # 输入进来的通道数 in_channles = x.shape.as_list()[-1] ip = in_channles // 2 # 对通道数进行分割 c_hat = Lambda(lambda z: z[:, :, :, 0:ip], name='%s/sp%d_slice' % (name, 0))(x) c = Lambda(lambda z: z[:, :, :, ip:], name='%s/sp%d_slice' % (name, 1))(x) return c_hat, c def channel_shuffle(x): height, width, channels = x.shape.as_list()[1:] channels_per_split = channels // 2 # 通道交换 x = K.reshape(x, [-1, height, width, 2, channels_per_split]) x = K.permute_dimensions(x, (0,1,2,4,3)) x = K.reshape(x, [-1, height, width, channels]) return x def shuffle_unit(inputs, out_channels, bottleneck_ratio, strides=2, stage=1, block=1): bn_axis = -1 prefix = 'stage{}/block{}'.format(stage, block) # [116, 232, 464] bottleneck_channels = int(out_channels * bottleneck_ratio/2) if strides < 2: c_hat, c = channel_split(inputs, '{}/spl'.format(prefix)) inputs = c # [116, 232, 464] x = Conv2D(bottleneck_channels, kernel_size=(1,1), strides=1, padding='same', name='{}/1x1conv_1'.format(prefix))(inputs) x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_1'.format(prefix))(x) x = Activation('relu', name='{}/relu_1x1conv_1'.format(prefix))(x) # 深度可分离卷积 x = DepthwiseConv2D(kernel_size=3, strides=strides, padding='same', name='{}/3x3dwconv'.format(prefix))(x) x = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv'.format(prefix))(x) # [116, 232, 464] x = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1conv_2'.format(prefix))(x) x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_2'.format(prefix))(x) x = Activation('relu', name='{}/relu_1x1conv_2'.format(prefix))(x) # 当strides等于2的时候,残差边需要添加卷积 if strides < 2: ret = Concatenate(axis=bn_axis, name='{}/concat_1'.format(prefix))([x, c_hat]) else: s2 = DepthwiseConv2D(kernel_size=3, strides=2, padding='same', name='{}/3x3dwconv_2'.format(prefix))(inputs) s2 = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv_2'.format(prefix))(s2) s2 = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1_conv_3'.format(prefix))(s2) s2 = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_3'.format(prefix))(s2) s2 = Activation('relu', name='{}/relu_1x1conv_3'.format(prefix))(s2) ret = Concatenate(axis=bn_axis, name='{}/concat_2'.format(prefix))([x, s2]) ret = Lambda(channel_shuffle, name='{}/channel_shuffle'.format(prefix))(ret) return ret def block(x, channel_map, bottleneck_ratio, repeat=1, stage=1): x = shuffle_unit(x, out_channels=channel_map[stage-1], strides=2,bottleneck_ratio=bottleneck_ratio,stage=stage,block=1) for i in range(1, repeat+1): x = shuffle_unit(x, out_channels=channel_map[stage-1],strides=1, bottleneck_ratio=bottleneck_ratio,stage=stage, block=(1+i)) return x
网络整体结构如图所示:
1、当输入进来的图片为224,224,3的时候,会经过一次卷积压缩+一次最大池化,此时网络的shape由224,224,3->112,112,24->56,56,24。
2、经过一次右边的ShuffleNet模块后进行三次左边的ShuffleNet模块。此时网络的shape由56,56,24->28,28,116。
3、经过一次右边的ShuffleNet模块后进行七次左边的ShuffleNet模块。此时网络的shape由28,28,116->14,14,232。
4、经过一次右边的ShuffleNet模块后进行三次左边的ShuffleNet模块。此时网络的shape由14,14,232->7,7,464。
5、卷积到1024,此时网络的shape由7,7,464->7,7,1024。
6、全局池化后,进行全连接,用于预测。
ShuffleNetV2一共有4个scale,分别对应不同大小的ShuffleNetV2。
import numpy as np from keras.utils import plot_model from keras.layers import Input, Conv2D, MaxPool2D from keras.layers import Activation, Add, Concatenate, Conv2D from keras.layers import GlobalAveragePooling2D, Dense from keras.layers import MaxPool2D,AveragePooling2D, BatchNormalization, Lambda, DepthwiseConv2D from keras.models import Model import keras.backend as K import numpy as np def channel_split(x, name=''): # 输入进来的通道数 in_channles = x.shape.as_list()[-1] ip = in_channles // 2 # 对通道数进行分割 c_hat = Lambda(lambda z: z[:, :, :, 0:ip], name='%s/sp%d_slice' % (name, 0))(x) c = Lambda(lambda z: z[:, :, :, ip:], name='%s/sp%d_slice' % (name, 1))(x) return c_hat, c def channel_shuffle(x): height, width, channels = x.shape.as_list()[1:] channels_per_split = channels // 2 # 通道交换 x = K.reshape(x, [-1, height, width, 2, channels_per_split]) x = K.permute_dimensions(x, (0,1,2,4,3)) x = K.reshape(x, [-1, height, width, channels]) return x def shuffle_unit(inputs, out_channels, bottleneck_ratio, strides=2, stage=1, block=1): bn_axis = -1 prefix = 'stage{}/block{}'.format(stage, block) # [116, 232, 464] bottleneck_channels = int(out_channels * bottleneck_ratio/2) if strides < 2: c_hat, c = channel_split(inputs, '{}/spl'.format(prefix)) inputs = c # [116, 232, 464] x = Conv2D(bottleneck_channels, kernel_size=(1,1), strides=1, padding='same', name='{}/1x1conv_1'.format(prefix))(inputs) x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_1'.format(prefix))(x) x = Activation('relu', name='{}/relu_1x1conv_1'.format(prefix))(x) # 深度可分离卷积 x = DepthwiseConv2D(kernel_size=3, strides=strides, padding='same', name='{}/3x3dwconv'.format(prefix))(x) x = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv'.format(prefix))(x) # [116, 232, 464] x = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1conv_2'.format(prefix))(x) x = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_2'.format(prefix))(x) x = Activation('relu', name='{}/relu_1x1conv_2'.format(prefix))(x) # 当strides等于2的时候,残差边需要添加卷积 if strides < 2: ret = Concatenate(axis=bn_axis, name='{}/concat_1'.format(prefix))([x, c_hat]) else: s2 = DepthwiseConv2D(kernel_size=3, strides=2, padding='same', name='{}/3x3dwconv_2'.format(prefix))(inputs) s2 = BatchNormalization(axis=bn_axis, name='{}/bn_3x3dwconv_2'.format(prefix))(s2) s2 = Conv2D(bottleneck_channels, kernel_size=1,strides=1,padding='same', name='{}/1x1_conv_3'.format(prefix))(s2) s2 = BatchNormalization(axis=bn_axis, name='{}/bn_1x1conv_3'.format(prefix))(s2) s2 = Activation('relu', name='{}/relu_1x1conv_3'.format(prefix))(s2) ret = Concatenate(axis=bn_axis, name='{}/concat_2'.format(prefix))([x, s2]) ret = Lambda(channel_shuffle, name='{}/channel_shuffle'.format(prefix))(ret) return ret def block(x, channel_map, bottleneck_ratio, repeat=1, stage=1): x = shuffle_unit(x, out_channels=channel_map[stage-1], strides=2,bottleneck_ratio=bottleneck_ratio,stage=stage,block=1) for i in range(1, repeat+1): x = shuffle_unit(x, out_channels=channel_map[stage-1],strides=1, bottleneck_ratio=bottleneck_ratio,stage=stage, block=(1+i)) return x def ShuffleNetV2(input_tensor=None, pooling='max', input_shape=(224,224,3), num_shuffle_units=[3,7,3], scale_factor=1, bottleneck_ratio=1, classes=1000): name = 'ShuffleNetV2_{}_{}_{}'.format(scale_factor, bottleneck_ratio, "".join([str(x) for x in num_shuffle_units])) out_dim_stage_two = {0.5:48, 1:116, 1.5:176, 2:244} out_channels_in_stage = np.array([1,1,2,4]) out_channels_in_stage *= out_dim_stage_two[scale_factor] # calculate output channels for each stage out_channels_in_stage[0] = 24 # first stage has always 24 output channels out_channels_in_stage = out_channels_in_stage.astype(int) img_input = Input(shape=input_shape) x = Conv2D(filters=out_channels_in_stage[0], kernel_size=(3, 3), padding='same', use_bias=False, strides=(2, 2), activation='relu', name='conv1')(img_input) x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='maxpool1')(x) for stage in range(len(num_shuffle_units)): repeat = num_shuffle_units[stage] x = block(x, out_channels_in_stage, repeat=repeat, bottleneck_ratio=bottleneck_ratio, stage=stage + 2) if scale_factor!=2: x = Conv2D(1024, kernel_size=1, padding='same', strides=1, name='1x1conv5_out', activation='relu')(x) else: x = Conv2D(2048, kernel_size=1, padding='same', strides=1, name='1x1conv5_out', activation='relu')(x) x = GlobalAveragePooling2D(name='global_avg_pool')(x) x = Dense(classes, name='fc')(x) x = Activation('softmax', name='softmax')(x) inputs = img_input model = Model(inputs, x, name=name) return model if __name__ == '__main__': import os os.environ['CUDA_VISIBLE_DEVICES'] = '' model = ShuffleNetV2(input_shape=(224, 224, 3),scale_factor=1) model.summary()
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要为大家介绍了Python对字典进行排序,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
在python的使用过程中我们会发现,如果编程的格式为一种形式,而我们输入的格式又是另外一种格式,那么这种情况下是不能计算的,要转换成相同格式才可以。
python命令行传参有哪些方法?很多新手对于python命令行传参的方法可能不是很了解,这篇文章就主要给大家分享python命令行传参的方法,对新手学习有一定的借鉴价值,感兴趣的朋友可以参考一下,下面我们一起来学习吧。
对于Python语言来说,比较传统的数据可视化模块是Matplotlib,但它存在不够美观、静态性、不易分享等缺点,限制了Python在数据可视化方面的发展。为了解决这个问题,新型的动态可视化开源模块Plotly应运而生。本文将为大家详细介绍Plotly的用法,需要的可以参考一下
这篇文章主要介绍了Python函数值传递引用传递及形式参数和实际参数的区别,具有一定的参考价值,需要的小伙伴可以参考一下,希望对你的学习有所帮助
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008