什么是注意力机制,实现方式有多少种
Admin 2022-09-03 群英技术资讯 403 次浏览
注意力机制是一个非常有效的trick,注意力机制的实现方式有许多,我们一起来学习一下
注意力机制是深度学习常用的一个小技巧,它有多种多样的实现形式,尽管实现方式多样,但是每一种注意力机制的实现的核心都是类似的,就是注意力。
注意力机制的核心重点就是让网络关注到它更需要关注的地方。
当我们使用卷积神经网络去处理图片的时候,我们会更希望卷积神经网络去注意应该注意的地方,而不是什么都关注,我们不可能手动去调节需要注意的地方,这个时候,如何让卷积神经网络去自适应的注意重要的物体变得极为重要。
注意力机制就是实现网络自适应注意的一个方式。
一般而言,注意力机制可以分为通道注意力机制,空间注意力机制,以及二者的结合。
代码下载
在深度学习中,常见的注意力机制的实现方式有SENet,CBAM,ECA等等。
SENet是通道注意力机制的典型实现。
2017年提出的SENet是最后一届ImageNet竞赛的冠军,其实现示意图如下所示,对于输入进来的特征层,我们关注其每一个通道的权重,对于SENet而言,其重点是获得输入进来的特征层,每一个通道的权值。利用SENet,我们可以让网络关注它最需要关注的通道。
其具体实现方式就是:
1、对输入进来的特征层进行全局平均池化。
2、然后进行两次全连接,第一次全连接神经元个数较少,第二次全连接神经元个数和输入特征层相同。
3、在完成两次全连接后,我们再取一次Sigmoid将值固定到0-1之间,此时我们获得了输入特征层每一个通道的权值(0-1之间)。
4、在获得这个权值后,我们将这个权值乘上原输入特征层即可。
实现代码如下:
import torch import torch.nn as nn import math class se_block(nn.Module): def __init__(self, channel, ratio=16): super(se_block, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // ratio, bias=False), nn.ReLU(inplace=True), nn.Linear(channel // ratio, channel, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y
CBAM将通道注意力机制和空间注意力机制进行一个结合,相比于SENet只关注通道的注意力机制可以取得更好的效果。其实现示意图如下所示,CBAM会对输入进来的特征层,分别进行通道注意力机制的处理和空间注意力机制的处理。
下图是通道注意力机制和空间注意力机制的具体实现方式:
图像的上半部分为通道注意力机制,通道注意力机制的实现可以分为两个部分,我们会对输入进来的单个特征层,分别进行全局平均池化和全局最大池化。之后对平均池化和最大池化的结果,利用共享的全连接层进行处理,我们会对处理后的两个结果进行相加,然后取一个sigmoid,此时我们获得了输入特征层每一个通道的权值(0-1之间)。
在获得这个权值后,我们将这个权值乘上原输入特征层即可。
图像的下半部分为空间注意力机制,我们会对输入进来的特征层,在每一个特征点的通道上取最大值和平均值。之后将这两个结果进行一个堆叠,利用一次通道数为1的卷积调整通道数,然后取一个sigmoid,此时我们获得了输入特征层每一个特征点的权值(0-1之间)。
在获得这个权值后,我们将这个权值乘上原输入特征层即可。
实现代码如下:
class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=8): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) # 利用1x1卷积代替全连接 self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv1(x) return self.sigmoid(x) class cbam_block(nn.Module): def __init__(self, channel, ratio=8, kernel_size=7): super(cbam_block, self).__init__() self.channelattention = ChannelAttention(channel, ratio=ratio) self.spatialattention = SpatialAttention(kernel_size=kernel_size) def forward(self, x): x = x * self.channelattention(x) x = x * self.spatialattention(x) return x
ECANet是也是通道注意力机制的一种实现形式。ECANet可以看作是SENet的改进版。
ECANet的作者认为SENet对通道注意力机制的预测带来了副作用,捕获所有通道的依赖关系是低效并且是不必要的。
在ECANet的论文中,作者认为卷积具有良好的跨通道信息获取能力。
ECA模块的思想是非常简单的,它去除了原来SE模块中的全连接层,直接在全局平均池化之后的特征上通过一个1D卷积进行学习。
既然使用到了1D卷积,那么1D卷积的卷积核大小的选择就变得非常重要了,了解过卷积原理的同学很快就可以明白,1D卷积的卷积核大小会影响注意力机制每个权重的计算要考虑的通道数量。用更专业的名词就是跨通道交互的覆盖率。
如下图所示,左图是常规的SE模块,右图是ECA模块。ECA模块用1D卷积替换两次全连接。
实现代码如下:
class eca_block(nn.Module): def __init__(self, channel, b=1, gamma=2): super(eca_block, self).__init__() kernel_size = int(abs((math.log(channel, 2) + b) / gamma)) kernel_size = kernel_size if kernel_size % 2 else kernel_size + 1 self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): y = self.avg_pool(x) y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1) y = self.sigmoid(y) return x * y.expand_as(x)
注意力机制是一个即插即用的模块,理论上可以放在任何一个特征层后面,可以放在主干网络,也可以放在加强特征提取网络。
由于放置在主干会导致网络的预训练权重无法使用,本文以YoloV4-tiny为例,将注意力机制应用加强特征提取网络上。
如下图所示,我们在主干网络提取出来的两个有效特征层上增加了注意力机制,同时对上采样后的结果增加了注意力机制。
实现代码如下:
attention_block = [se_block, cbam_block, eca_block] #---------------------------------------------------# # 特征层->最后的输出 #---------------------------------------------------# class YoloBody(nn.Module): def __init__(self, anchors_mask, num_classes, phi=0): super(YoloBody, self).__init__() self.phi = phi self.backbone = darknet53_tiny(None) self.conv_for_P5 = BasicConv(512,256,1) self.yolo_headP5 = yolo_head([512, len(anchors_mask[0]) * (5 + num_classes)],256) self.upsample = Upsample(256,128) self.yolo_headP4 = yolo_head([256, len(anchors_mask[1]) * (5 + num_classes)],384) if 1 <= self.phi and self.phi <= 3: self.feat1_att = attention_block[self.phi - 1](256) self.feat2_att = attention_block[self.phi - 1](512) self.upsample_att = attention_block[self.phi - 1](128) def forward(self, x): #---------------------------------------------------# # 生成CSPdarknet53_tiny的主干模型 # feat1的shape为26,26,256 # feat2的shape为13,13,512 #---------------------------------------------------# feat1, feat2 = self.backbone(x) if 1 <= self.phi and self.phi <= 3: feat1 = self.feat1_att(feat1) feat2 = self.feat2_att(feat2) # 13,13,512 -> 13,13,256 P5 = self.conv_for_P5(feat2) # 13,13,256 -> 13,13,512 -> 13,13,255 out0 = self.yolo_headP5(P5) # 13,13,256 -> 13,13,128 -> 26,26,128 P5_Upsample = self.upsample(P5) # 26,26,256 + 26,26,128 -> 26,26,384 if 1 <= self.phi and self.phi <= 3: P5_Upsample = self.upsample_att(P5_Upsample) P4 = torch.cat([P5_Upsample,feat1],axis=1) # 26,26,384 -> 26,26,256 -> 26,26,255 out1 = self.yolo_headP4(P4) return out0, out1
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
这篇文章主要介绍了Python写安全小工具之TCP全连接端口扫描器,文章通过TCP connect来实现一个TCP全连接端口扫描器。具有一定的参考价值,需要的小伙伴可以参考一下
本文主要介绍了pandas实现数据可视化的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
所谓定时器,是指间隔特定时间执行特定任务的机制。几乎所有的编程语言,都有定时器的实现。这篇文章主要介绍的是通过Python实现的定时器,感兴趣的可以跟随小编学习一下
pycharm中jupyter怎样安装使用?Jupyter也就是指Jupyter Notebook,是一个交互式笔记本,支持运行40多种编程语言,能够应用于数据清理和转换,数值模拟,统计建模,机器学习等。这篇文章主要分享在pycharm中,jupyter的使用。
这篇文章主要为大家介绍了Python实现一阶马尔科夫链生成随机DNA序列示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008