Tensorflow中cpu和gpu的用法有哪些不同呢?

Admin 2022-09-02 群英技术资讯 322 次浏览

今天这篇我们来学习和了解“Tensorflow中cpu和gpu的用法有哪些不同呢?”,下文的讲解详细,步骤过程清晰,对大家进一步学习和理解“Tensorflow中cpu和gpu的用法有哪些不同呢?”有一定的帮助。有这方面学习需要的朋友就继续往下看吧!

使用cpu和gpu的区别

在Tensorflow中使用gpu和cpu是有很大的差别的。在小数据集的情况下,cpu和gpu的性能差别不大。

不过在大数据集的情况下,cpu的时间显著增加,而gpu变化并不明显。

不过,我的笔记本电脑的风扇终于全功率运行了。

import tensorflow as tf
import timeit
import numpy as np
import matplotlib.pyplot as plt
def cpu_run(num):
  with tf.device('/cpu:0'):
    cpu_a=tf.random.normal([1,num])
    cpu_b=tf.random.normal([num,1])
    c=tf.matmul(cpu_a,cpu_b)
  return c
def gpu_run(num):
  with tf.device('/gpu:0'):
    gpu_a=tf.random.normal([1,num])
    gpu_b=tf.random.normal([num,1])
    c=tf.matmul(gpu_a,gpu_b)
  return c
k=10
m=7
cpu_result=np.arange(m,dtype=np.float32)
gpu_result=np.arange(m,dtype=np.float32)
x_time=np.arange(m)
for i in range(m):
  k=k*10
  x_time[i]=k
  cpu_str='cpu_run('+str(k)+')'
  gpu_str='gpu_run('+str(k)+')'
  #print(cpu_str)
  cpu_time=timeit.timeit(cpu_str,'from __main__ import cpu_run',number=10)
  gpu_time=timeit.timeit(gpu_str,'from __main__ import gpu_run',number=10)
  # 正式计算10次,取平均时间
  cpu_time=timeit.timeit(cpu_str,'from __main__ import cpu_run',number=10)
  gpu_time=timeit.timeit(gpu_str,'from __main__ import gpu_run',number=10)
  cpu_result[i]=cpu_time
  gpu_result[i]=gpu_time
print(cpu_result)
print(gpu_result)
fig, ax = plt.subplots()
ax.set_xscale("log")
ax.set_adjustable("datalim")
ax.plot(x_time,cpu_result)
ax.plot(x_time,gpu_result)
ax.grid()
plt.draw()
plt.show()

蓝线是cpu的耗时,而红线是gpu的耗时。

一些术语的比较(tensorflow和pytorch/cpu和gpu/)

tensorflow和pytorch

  • pytorch是一个动态框架,tensorflow是一个静态框架。
  • tensorflow是一个静态框架体现在:需要先构建一个tensorflow的计算图,构建好之后这样的一个计算图是不能变的,然后再传入不同的数据进去进行计算。
  • 这种静态框架带来的问题是:固定了计算的流程,势必带来不灵活性,如果要改变计算的逻辑或者是随着时间变化的计算逻辑,这样的动态计算tensorflow是是无法实现的。
  • pytorch是一个动态框架,和python的逻辑一样,对变量做任何操作都是灵活的。
  • 一个好的框架需要具备三点:(1)对大的计算图能方便的实现(2)能自动求变量的导数(3)能简单的运行在GPU上。这三点pytorch都可以达到
  • tensorflow在gpu上的分布式计算更为出色,在数据量巨大的时候效率比pytorch要高。企业很多都是用的tensorflow,pytorch在学术科研上使用多些。
  • pytorch包括三个层次:tensor/variable/module。tensor即张量的意思,由于是矩阵的运算,所以适合在矩阵上跑。variable就是tensor的封装,封装的目的就是为了能够保存住该variable在整个计算图中的位置,能够知道计算图中各个变量之间的相互依赖关系,这样就能够反向求梯度。module是一个更高的层次,是一个神经网络的层次,可以直接调用全连接层、卷积层等神经网络。

cpu和gpu

  • cpu更少的核,但是单个核的计算能力很强
  • gpu:更多的核,每个核的计算能力不如cpu,所以更适合做并行计算,如矩阵计算,深度学习就是很多的矩阵计算。

cuda

  • 直接写cuda代码就类似写汇编语言
  • 比cuda高级的是cudnn
  • 比cudnn高级的是用框架tensorflow/caffe/pytorch

以上就是关于“Tensorflow中cpu和gpu的用法有哪些不同呢?”的相关知识,感谢各位的阅读,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注群英网络,小编每天都会为大家更新不同的知识。
群英智防CDN,智能加速解决方案

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服