concat()函数可以做什么,实例是什么样的

Admin 2022-09-02 群英技术资讯 867 次浏览

本篇内容介绍了“concat()函数可以做什么,实例是什么样的”的有关知识,在实际项目的操作过程或是学习过程中,不少人都会遇到这样的问题,接下来就让小编带大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!


一、concat函数

1.concat()函数可以沿着一条轴将多个对象进行堆叠,其使用方式类似数据库中的数据表合并
pandas.concat(objs, axis=0, join=’outer’, join_axes=None, ignore_index=False, keys=None, levels=None, verify_integrity=False, sort=None, copy=True)

2.参数含义如下:

参数 作用
axis 表示连接的轴向,可以为0或者1,默认为0
join 表示连接的方式,inner表示内连接,outer表示外连接,默认使用外连接
ignore_index 接收布尔值,默认为False。如果设置为True,则表示清除现有索引并重置索引值
keys 接收序列,表示添加最外层索引
levels 用于构建MultiIndex的特定级别(唯一值)
names 设置了keys和level参数后,用于创建分层级别的名称
verify_integerity 检查新的连接轴是否包含重复项。接收布尔值,当设置为True时,如果有重复的轴将会抛出错误,默认为False

3.根据轴方向的不同,可以将堆叠分成横向堆叠与纵向堆叠,默认采用的是纵向堆叠方式

4.在堆叠数据时,默认采用的是外连接(join参数设为outer)的方式进行合并,当然也可以通过join=inner设置为内连接的方式。

1)横向堆叠与外连接

import pandas as pd
df1=pd.DataFrame({'A':['A0','A1','A2'],
                  'B':['B0','B1','B2']})
df1

横向堆叠合并df1和df2,采用外连接的方式

pd.concat([df1,df2],join='outer',axis=1)

2) 纵向堆叠与内链接

import pandas as pd
first=pd.DataFrame({'A':['A0','A1','A2'],
                   'B':['B0','B1','B2'],
                   'C':['C0','C1','C2']})
first

second=pd.DataFrame({'B':['B3','B4','B5'],
                   'C':['C3','C4','C5'],
                    'D':['D3','D4','D5']})
second

3.当使用concat()函数合并时,若是将axis参数的值设为0,且join参数的值设为inner,则代表着使用纵向堆叠与内连接的方式进行合并

pd.concat([first,second],join='inner',axis=0)

二、merge()函数

1)主键合并数据

在使用merge()函数进行合并时,默认会使用重叠的列索引做为合并键,并采用内连接方式合并数据,即取行索引重叠的部分。

import pandas as pd
left=pd.DataFrame({'key':['K0','K1','K2'],
                  'A':['A0','A1','A2'],
                  'B':['B0','B1','B2']})
left

right=pd.DataFrame({'key':['K0','K1','K2','K3'],
                   'C':['C0','C1','C2','C3'],
                   'D':['D0','D1','D2','D3']})
right

pd.merge(left,right,on='key')

2)merge()函数还支持对含有多个重叠列的DataFrame对象进行合并。

import pandas as pd
data1=pd.DataFrame({'key':['K0','K1','K2'],
                  'A':['A0','A1','A2'],
                  'B':['B0','B1','B2']})
data1

data2=pd.DataFrame({'key':['K0','K5','K2','K4'],
                         'B':['B0','B1','B2','B5'],
                         'C':['C0','C1','C2','C3'],
                         'D':['D0','D1','D2','D3']})
data2

pd.merge(data1,data2,on=['key','B'])

1)根据行索引合并数据

join()方法能够通过索引或指定列来连接多个DataFrame对象

join(other,on = None,how =‘left’,lsuffix =‘’,rsuffix =‘’,sort = False )

参数 作用
on 名称,用于连接列名
how 可以从{‘‘left’’ ,‘‘right’’, ‘‘outer’’, ‘‘inner’’}中任选一个,默认使用左连接的方式。
sort 根据连接键对合并的数据进行排序,默认为False
import pandas as pd
data3=pd.DataFrame({'A':['A0','A1','A2'],
                   'B':['B0','B1','B2']})
data3

data4=pd.DataFrame({'C': ['C0', 'C1', 'C2'],
                         'D': ['D0', 'D1', 'D2']},
                     index=['a','b','c'])
data3.join(data4,how='outer')  # 外连接

data3.join(data4,how='left')  #左连接

data3.join(data4,how='right')  #右连接

data3.join(data4,how='inner')  #内连接

import pandas as pd
left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                        'B': ['B0', 'B1', 'B2'],
                      'key': ['K0', 'K1', 'K2']})
left

right = pd.DataFrame({'C': ['C0', 'C1','C2'],
                         'D': ['D0', 'D1','D2']},
                        index=['K0', 'K1','K2'])
right

on参数指定连接的列名

left.join(right,how='left',on='key')  #on参数指定连接的列名

2)合并重叠数据

当DataFrame对象中出现了缺失数据,而我们希望使用其他DataFrame对象中的数据填充缺失数据,则可以通过combine_first()方法为缺失数据填充。

import pandas as pd
import numpy as np
from numpy import NAN
left = pd.DataFrame({'A': [np.nan, 'A1', 'A2', 'A3'],
                        'B': [np.nan, 'B1', np.nan, 'B3'],
                        'key': ['K0', 'K1', 'K2', 'K3']})
left

right = pd.DataFrame({'A': ['C0', 'C1','C2'],
                         'B': ['D0', 'D1','D2']},
                         index=[1,0,2])
right

用right的数据填充left缺失的部分

left.combine_first(right) # 用right的数据填充left缺失的部分


到此这篇关于“concat()函数可以做什么,实例是什么样的”的文章就介绍到这了,更多相关内容请搜索群英网络以前的文章或继续浏览下面的相关文章,希望大家以后多多支持群英网络!
群英智防CDN,智能加速解决方案
标签: concat()函数

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。

猜你喜欢

成为群英会员,开启智能安全云计算之旅

立即注册
专业资深工程师驻守
7X24小时快速响应
一站式无忧技术支持
免费备案服务
免费拨打  400-678-4567
免费拨打  400-678-4567 免费拨打 400-678-4567 或 0668-2555555
在线客服
微信公众号
返回顶部
返回顶部 返回顶部
在线客服
在线客服