Python中怎样实现一些常见的概率分布
Admin 2022-09-01 群英技术资讯 311 次浏览
概率和统计知识是数据科学和机器学习的核心; 我们需要统计和概率知识来有效地收集、审查、分析数据。
现实世界中有几个现象实例被认为是统计性质的(即天气数据、销售数据、财务数据等)。这意味着在某些情况下,我们已经能够开发出方法来帮助我们通过可以描述数据特征的数学函数来模拟自然。
“概率分布是一个数学函数,它给出了实验中不同可能结果的发生概率。”
了解数据的分布有助于更好地模拟我们周围的世界。它可以帮助我们确定各种结果的可能性,或估计事件的可变性。所有这些都使得了解不同的概率分布在数据科学和机器学习中非常有价值。
最直接的分布是均匀分布。均匀分布是一种概率分布,其中所有结果的可能性均等。例如,如果我们掷一个公平的骰子,落在任何数字上的概率是 1/6。这是一个离散的均匀分布。
但是并不是所有的均匀分布都是离散的——它们也可以是连续的。它们可以在指定范围内取任何实际值。a 和 b 之间连续均匀分布的概率密度函数 (PDF) 如下:
让我们看看如何在 Python 中对它们进行编码:
import numpy as np import matplotlib.pyplot as plt from scipy import stats # for continuous a = 0 b = 50 size = 5000 X_continuous = np.linspace(a, b, size) continuous_uniform = stats.uniform(loc=a, scale=b) continuous_uniform_pdf = continuous_uniform.pdf(X_continuous) # for discrete X_discrete = np.arange(1, 7) discrete_uniform = stats.randint(1, 7) discrete_uniform_pmf = discrete_uniform.pmf(X_discrete) # plot both tables fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(15,5)) # discrete plot ax[0].bar(X_discrete, discrete_uniform_pmf) ax[0].set_xlabel("X") ax[0].set_ylabel("Probability") ax[0].set_title("Discrete Uniform Distribution") # continuous plot ax[1].plot(X_continuous, continuous_uniform_pdf) ax[1].set_xlabel("X") ax[1].set_ylabel("Probability") ax[1].set_title("Continuous Uniform Distribution") plt.show()
高斯分布可能是最常听到也熟悉的分布。它有几个名字:有人称它为钟形曲线,因为它的概率图看起来像一个钟形,有人称它为高斯分布,因为首先描述它的德国数学家卡尔·高斯命名,还有一些人称它为正态分布,因为早期的统计学家 注意到它一遍又一遍地再次发生。
正态分布的概率密度函数如下:
σ 是标准偏差,μ 是分布的平均值。要注意的是,在正态分布中,均值、众数和中位数都是相等的。
当我们绘制正态分布的随机变量时,曲线围绕均值对称——一半的值在中心的左侧,一半在中心的右侧。并且,曲线下的总面积为 1。
mu = 0 variance = 1 sigma = np.sqrt(variance) x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100) plt.subplots(figsize=(8, 5)) plt.plot(x, stats.norm.pdf(x, mu, sigma)) plt.title("Normal Distribution") plt.show()
对于正态分布来说。经验规则告诉我们数据的百分比落在平均值的一定数量的标准偏差内。这些百分比是:
对数正态分布是对数呈正态分布的随机变量的连续概率分布。因此,如果随机变量 X 是对数正态分布的,则 Y = ln(X) 具有正态分布。
这是对数正态分布的 PDF:
对数正态分布的随机变量只取正实数值。因此,对数正态分布会创建右偏曲线。
让我们在 Python 中绘制它:
X = np.linspace(0, 6, 500) std = 1 mean = 0 lognorm_distribution = stats.lognorm([std], loc=mean) lognorm_distribution_pdf = lognorm_distribution.pdf(X) fig, ax = plt.subplots(figsize=(8, 5)) plt.plot(X, lognorm_distribution_pdf, label="μ=0, σ=1") ax.set_xticks(np.arange(min(X), max(X))) std = 0.5 mean = 0 lognorm_distribution = stats.lognorm([std], loc=mean) lognorm_distribution_pdf = lognorm_distribution.pdf(X) plt.plot(X, lognorm_distribution_pdf, label="μ=0, σ=0.5") std = 1.5 mean = 1 lognorm_distribution = stats.lognorm([std], loc=mean) lognorm_distribution_pdf = lognorm_distribution.pdf(X) plt.plot(X, lognorm_distribution_pdf, label="μ=1, σ=1.5") plt.title("Lognormal Distribution") plt.legend() plt.show()
泊松分布以法国数学家西蒙·丹尼斯·泊松的名字命名。这是一个离散的概率分布,这意味着它计算具有有限结果的事件——换句话说,它是一个计数分布。因此,泊松分布用于显示事件在指定时期内可能发生的次数。
如果一个事件在时间上以固定的速率发生,那么及时观察到事件的数量(n)的概率可以用泊松分布来描述。例如,顾客可能以每分钟 3 次的平均速度到达咖啡馆。我们可以使用泊松分布来计算 9 个客户在 2 分钟内到达的概率。
下面是概率质量函数公式:
λ 是一个时间单位的事件率——在我们的例子中,它是 3。k 是出现的次数——在我们的例子中,它是 9。这里可以使用 Scipy 来完成概率的计算。
from scipy import stats print(stats.poisson.pmf(k=9, mu=3))
输出:
0.002700503931560479
泊松分布的曲线类似于正态分布,λ 表示峰值。
X = stats.poisson.rvs(mu=3, size=500) plt.subplots(figsize=(8, 5)) plt.hist(X, density=True, edgecolor="black") plt.title("Poisson Distribution") plt.show()
指数分布是泊松点过程中事件之间时间的概率分布。指数分布的概率密度函数如下:
λ 是速率参数,x 是随机变量。
X = np.linspace(0, 5, 5000) exponetial_distribtuion = stats.expon.pdf(X, loc=0, scale=1) plt.subplots(figsize=(8,5)) plt.plot(X, exponetial_distribtuion) plt.title("Exponential Distribution") plt.show()
可以将二项分布视为实验中成功或失败的概率。有些人也可能将其描述为抛硬币概率。
参数为 n 和 p 的二项式分布是在 n 个独立实验序列中成功次数的离散概率分布,每个实验都问一个是 - 否问题,每个实验都有自己的布尔值结果:成功或失败。
本质上,二项分布测量两个事件的概率。一个事件发生的概率为 p,另一事件发生的概率为 1-p。
这是二项分布的公式:
可视化代码如下:
X = np.random.binomial(n=1, p=0.5, size=1000) plt.subplots(figsize=(8, 5)) plt.hist(X) plt.title("Binomial Distribution") plt.show()
学生 t 分布(或简称 t 分布)是在样本量较小且总体标准差未知的情况下估计正态分布总体的均值时出现的连续概率分布族的任何成员。它是由英国统计学家威廉·西利·戈塞特(William Sealy Gosset)以笔名“student”开发的。
PDF如下:
n 是称为“自由度”的参数,有时可以看到它被称为“d.o.f.” 对于较高的 n 值,t 分布更接近正态分布。
import seaborn as sns from scipy import stats X1 = stats.t.rvs(df=1, size=4) X2 = stats.t.rvs(df=3, size=4) X3 = stats.t.rvs(df=9, size=4) plt.subplots(figsize=(8,5)) sns.kdeplot(X1, label = "1 d.o.f") sns.kdeplot(X2, label = "3 d.o.f") sns.kdeplot(X3, label = "6 d.o.f") plt.title("Student's t distribution") plt.legend() plt.show()
卡方分布是伽马分布的一个特例;对于 k 个自由度,卡方分布是一些独立的标准正态随机变量的 k 的平方和。
PDF如下:
这是一种流行的概率分布,常用于假设检验和置信区间的构建。
在 Python 中绘制一些示例图:
X = np.arange(0, 6, 0.25) plt.subplots(figsize=(8, 5)) plt.plot(X, stats.chi2.pdf(X, df=1), label="1 d.o.f") plt.plot(X, stats.chi2.pdf(X, df=2), label="2 d.o.f") plt.plot(X, stats.chi2.pdf(X, df=3), label="3 d.o.f") plt.title("Chi-squared Distribution") plt.legend() plt.show()
掌握统计学和概率对于数据科学至关重要。在本文展示了一些常见且常用的分布,希望对你有所帮助。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
猜你喜欢
__str__()方法,这个方法是一个魔法方法 (Magic Method) ,用来显示信息,该方法需要 return 一个数据,并且只有self一个参数,当在类的外部 print(对象) 则打印这个数据,当类的实例化对象如果没有__str__ 则默认打印 对象在内存的地址。如果拥有 __str__ 方法后,那么打印对象则打印 __str__ 的返回值。
默认作用域前段时间学了下Lua,发现Lua的默认作用域和Python是相反的。Lua定义变量时默认变量的作用域是全局(global,这样说不是很准确,L
这篇文章给大家分享的是有关python合并excel表的操作,合并excel表是比较常用的操作了,小编觉得挺实用的,因此分享给大家做个参考,接下来一起跟随小编看看吧。
这篇文章主要为大家介绍了Python的变量,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
这篇文章主要介绍了pygame实现井字棋之第一步绘制九宫格,文中有非常详细的代码示例,对正在学习python的小伙伴们有非常好的帮助,需要的朋友可以参考下
成为群英会员,开启智能安全云计算之旅
立即注册Copyright © QY Network Company Ltd. All Rights Reserved. 2003-2020 群英 版权所有
增值电信经营许可证 : B1.B2-20140078 粤ICP备09006778号 域名注册商资质 粤 D3.1-20240008